Skin diseases associated with Malassezia species

Aditya K. Gupta, MD, PhD, FRCPC, a,b Roma Batra, MPhil, PhD b Robyn Bluhm, HBSc, MA, b,c Teun Boekhout, PhD, d and Thomas L. Dawson, Jr, PhD e
Toronto and London, Ontario, Canada; Utrecht, the Netherlands; and Cincinnati, Ohio

The yeasts of the genus Malassezia have been associated with a number of diseases affecting the human skin, such as pityriasis versicolor, Malassezia (Pityrosporum) folliculitis, seborrheic dermatitis and dandruff, atopic dermatitis, psoriasis, and—less commonly—with other dermatologic disorders such as confluent and reticulated papillomatosis, onychomycosis, and transient acantholytic dermatosis. Although Malassezia yeasts are a part of the normal microflora, under certain conditions they can cause superficial skin infection. The study of the clinical role of Malassezia species has been surrounded by controversy because of their fastidious nature in vitro, and relative difficulty in isolation, cultivation, and identification. Many studies have been published in the past few years after the taxonomic revision carried out in 1996 in which 7 species were recognized. Two new species have been recently described, one of which has been isolated from patients with atopic dermatitis. This review focuses on the clinical, mycologic, and immunologic aspects of the various skin diseases associated with Malassezia. It also highlights the importance of individual Malassezia species in the different dermatologic disorders related to these yeasts. (J Am Acad Dermatol 2004;51:785-98.)

Although yeasts of the genus Malassezia are a normal part of the skin flora, they are also associated with several common dermatologic conditions. It has been generally accepted that pityriasis versicolor and Malassezia (Pityrosporum) folliculitis are caused by Malassezia yeasts. In the case of seborrheic dermatitis (SD) and dandruff (SD/D), the causal role of Malassezia has become clear, but the role of specific species is still being defined. In atopic dermatitis (AD) and psoriasis, the evidence for a causal relationship remains less defined. However, there have been reports in the literature linking all these disorders with the Malassezia yeasts. In general, because of their dependence on lipids for survival, Malassezia yeasts are most often found in sebum-rich areas of the skin such as the trunk, back, face, and scalp. Less frequently, they may also be found on other areas of the body including arms, legs, and genitalia. In some cases, these areas may also be affected by the clinical conditions associated with Malassezia. However, in the vast majority of patients, skin involvement is localized to specific areas of the skin. In the past, it was believed that this genus (then known as Pityrosporum) consisted of two species, which could often be differentiated on the basis of cellular morphology. In addition, reports using the older Pityrosporum taxonomy suggested that the relative prevalence of P orbiculare and P ovale varied with both body site and geographic location of patients. All Malassezia species have distinct morphologic characteristics that allow them to be differentiated from other yeasts. However, the use of molecular markers is essential to assign the correct taxonomic position to the individual species. In 1996, Guého et al3 revised the Malassezia genus using morphology, ultrastructure, physiology, and molecular biology, and classified the genus into 7 species: M globosa; M restricta; M obtusa; M slooffiae; M sympodialis; M furfur; and the nonlipid dependent M pachydermatis. The recent identification of two new Malassezia species, M dermatis4 and M equi5 (not yet formally described, but tentatively named), has further substantiated the need for molecular techniques to distinguish the various Malassezia species. With the revision of the taxonomy of Malassezia, there has been a renewal of interest in their clinical importance. The development of physiologic and molecular techniques for distinguishing between the 7 recognized species has led to new research that examines the relationship between...
these yeasts and skin disease. Several culture-based and molecular techniques have been evaluated for their use to distinguish the *Malassezia* species. Gupta et al. and Nakabayashi et al. successfully conducted culture-based assays on samples from patients with pityriasis versicolor, SD, and AD, and from control subjects. However, culture-based methods can be biased because of different growth rates and culture requirements of different species. Therefore, the emphasis is now on molecular techniques. Recently, Gemmer et al. devised a specific and highly sensitive molecular method, terminal fragment length polymorphism, suitable for the rapid and reliable identification of *Malassezia* species from very small clinical samples. Polymerase chain reaction restriction endonuclease analysis, amplified fragment length polymorphism analysis, and pulsed field gel electrophoresis are the other molecular techniques that have been successfully used by Gupta et al., Theelen et al., and Boekhout et al., respectively.

The sole nonobligatory lipophilic species, *M. pachydermatis*, is primarily zoophilic, although it has occasionally been isolated from human skin and has also been implicated in nosocomial systemic *Malassezia* infections. *M. furfur* has also been implicated in several nosocomial outbreaks. *M. globosa* matches the original description of *Pityrosporum* orbiculare, whereas *M. restricta* visually resembles *Pityrosporum ovale*. Of the 6 lipophilic species—*M. obtusa*, *M. restricta*, *M. slooffiae*, *M. sympodialis*, *M. furfur*, and *M. globosa*—there is some question as to which species are more commonly found on human skin, whether there is variation in the distribution of the yeasts on different body sites, and whether there is geographic variation in species prevalence. Two new species have recently been described: *M. dermatis* isolated from patients with AD; and *M. equi* (tentatively named) isolated from skin of healthy horses. There is also the clinical question of whether there is a relationship between particular *Malassezia* species and various dermatologic disorders, as different authors have debated whether *Malassezia* yeasts are of primary pathogenic significance or a secondary phenomenon. This review will discuss the skin diseases associated with *Malassezia* yeasts and discuss the evidence for individual species being associated with a given condition.

SD/D

SD/D is perhaps the most common disease associated with *Malassezia* yeasts, occurring in 1% to 3% of the general population. The incidence of SD/D is much higher in patients who are immunocompromised, especially those with AIDS, ranging from 30% to 33%. Dandruff has recently received much attention, as its presence can lead to loss of self-esteem and a negative social image. It is a disorder that is generally discussed alongside SD because of the scaling effect of the scalp. The relationship between SD and dandruff has been controversial. Some investigators regard a diagnosis of SD of the scalp as a way of describing severe dandruff, whereas others believe that the term “dandruff” should be used for any flaking of the scalp, regardless of origin. The resurgence of interest in the role of *Malassezia* yeasts in the development of SD/D has provided additional evidence that, in most cases, dandruff is a mild form of SD. Some authors believe that dandruff is a noninflammatory form of SD. Considering all available data, we consider SD and dandruff to be differing severity manifestations of similar origin, and we will, therefore, discuss them together in this review (Fig 1).

The vast majority of more recent data supports a direct causal link between *Malassezia* and dandruff. First, effective treatment of the condition can occur with a wide range of material types, from zinc salts and selenium salts to highly specific azoles, and the only known functional link between these materials is their antifungal activity. The second supporting factor is that improvement in SD/D is accompanied by a reduction in *Malassezia* levels on the scalp. Although the absolute level of *Malassezia* does not appear to correlate with the condition, its reduction, among those individuals who express the symptoms, strongly supports its role. The nature of why some individuals are susceptible and others are not is less clearly defined and will require further research into individual susceptibility.
Other diseases associated with SD/D are Parkinson’s disease, depression, spinal injuries, and pityriasis versicolor. They are somewhat more common in male patients than in female patients, and tend to occur most frequently in adolescents and young adults, and again in adults older than 50 years. The association of SD/D with adolescents and young adults is most likely caused by the increase in sebaceous activity during puberty. The disease appears to be influenced by seasons. The lesions worsen during winter, whereas sunlight seems to improve the clinical appearance of the disease. It is interesting to note, however, that Malassezia secretes a potent UV protectant (Pityriacitrin) that confers resistance to UV radiation.

The lesions of SD vary in appearance. The characteristic presentation is patches of red, flaking, greasy skin, particularly on the scalp, nasolabial folds, ears, eyebrows, and chest. However, patients often vary with the degree of erythema, amount of flaking, and the extent to which the affected areas have a greasy appearance. It is also important to note that, although patients with SD may have oily skin, this is not necessarily the cause. Although less severe than SD, dandruff is characterized by patches of loosely adherent, oily flakes, often accompanied by pruritus. Also, dandruff does not exhibit the overt inflammation seen in SD, and is confined to the scalp.

Early investigators suggested that the Malassezia yeasts might play a role in the cause of SD/D; however, researchers later began to view this condition as the result of hyperproliferation. This hypothesis was in part because of the effectiveness of keratolytic and anti-inflammatory agents (eg, salicylic acid and corticosteroids) in the treatment of SD. Keratolytic therapy is much less effective in dandruff than SD, perhaps because of the lower severity of the inflammation and hyperproliferation. Topical treatment has previously been effective with broad-spectrum antimicrobials such as selenium sulfide and zinc pyrithione. However, their nonspecificity toward bacteria and fungi, coupled with their keratolytic and anti-inflammatory effects, respectively, have complicated the definition of the specific causal organism or organisms. With the development of effective and highly specific antifungal agents such as the azoles, hydroxypyridones, and allylamines, the focus began to switch to the study of fungal skin flora, particularly the Malassezia yeasts.

The proportion of Malassezia yeasts on the scalp is higher for patients with SD/D than in control subjects (Fig 2). There are conflicting data regarding the number of yeasts in lesional versus non-lesional skin. Some have reported a decrease in the density of Malassezia recovered from lesional skin, whereas others have shown a greater number of yeasts in lesional skin, a greater detectable incidence in affected patients, or no difference. It has been suggested that SD is not caused by an overgrowth of the Malassezia yeasts, but by an abnormal host response to the yeasts on the skin. However, patients with SD do not appear to have higher total antibody levels than control subjects. Moreover, there is conflicting evidence regarding IgG antibodies in particular; some investigators have found an increase in IgG levels in patients, whereas others have shown that the elevated IgG antibody titers are not related to Malassezia. Midgley demonstrated that 72.5% patients with SD had precipitating antibodies against M globosa, in contrast with control subjects. It has been suggested that the lesions of SD are caused by toxin production or by the lipase activity of Malassezia. The enzyme lipase splits triglycerides into irritant fatty acids that may induce scaling or releases arachidonic acid, which is involved in the inflammation of skin. It has also been suggested that impaired cell-mediated immunity may facilitate fungal survival in the skin. Further, Faergemann detected increased numbers of NK1+ and CD16+ cells, in combination with complement activation, during their investigation of immune response of a sample of patients with SD. In addition, elevated numbers of activated (HLA-DR4-positive) lymphocytes have been detected in the circulation of certain patients with SD, prompting the hypothesis that intermittent activation of the immune system may have occurred. Moreover, Watanabe et al demonstrated that Malassezia yeast

![Fig 2.](image)
species can differentially induce human cytokine production by means of keratinocytes. Taken as a whole, the above-cited studies strongly support the contention that *Malassezia* yeasts contribute to the pathogenesis of SD.

As with pityriasis versicolor, the revision of the *Malassezia* taxonomy sparked new research into the relationship between the 8 lipophilic species and the clinical entities associated with the yeasts. The species that have been shown to be most closely associated with SD to date are *M. globosa* and *M. restricta*. However, some authors have also reported *M. furfur*, *M. sympodialis*, *M. obtusa*, and *M. slooffiae*. Interestingly, whereas Nakabayashi et al found that *M. globosa* was isolated with the same frequency from both lesional and nonlesional skin, Gupta et al found that significantly more *Malassezia* yeasts could be cultured from nonlesional skin. Given that previous studies have failed to find this difference, the results of this study may represent an artifact of the sampling procedure; Gupta et al used contact plates filled with Leeming-Notman agar, whereas Nakabayashi et al used the swab and tape method. Similarly, Sandström et al using contact plates, cultured significantly fewer *Malassezia* yeasts from lesional than from nonlesional skin. However, in this study, this was only the case with one *Malassezia* species, *M. globosa*. Two other species, *M. sympodialis* and *M. obtusa*, were often cultured from both lesional and nonlesional skin of patients with SD. Gemmer et al using DNA-based detection, report a significantly higher detection rate for both *M. globosa* and *M. restricta* in patients with SD. They suggest that the difficulty in culturing *M. restricta* and *M. globosa* has resulted in their presence being underreported by culture-based methods, relative to the culturally robust *M. furfur*, *M. sympodialis*, and *M. slooffiae* (Fig 3). Gupta et al have suggested that the use of synthetic detergents and shampoos by patients may represent factors that lead to reduced colony counts and, hence, differences in results in the various studies.

There is also a possibility that SD of the scalp and of the trunk may prove to be associated with different species, as there is already evidence that different *Malassezia* species tend to be found on different body sites in both normal and diseased skin. Development of new, more species-specific molecular diagnostics is currently clarifying the picture, but further work will be necessary by applying these techniques to more patients.

PITYRIASIS VERSICOLOR

Pityriasis versicolor is a chronic superficial fungal disease that is characterized by the appearance of round to oval lesions, most commonly found on the trunk and upper aspects of the arms. These lesions vary in color, and can be hypopigmented (white) or hyperpigmented (pink, tan, brown, or black). Flaking is evident, although in larger lesions this may occur only at the border. Lesions may be round or oval, becoming confluent in advanced cases of the disorder. Generally, pityriasis versicolor is regarded as a cosmetic disorder, as most patients are asymptomatic. However, pruritus does occur in some cases. The disease often has a relapsing nature and needs to be treated frequently.

Although some cases of pityriasis versicolor have been reported in children and infants, the disease is most commonly found in adolescents and young adults when the sebaceous gland activity is maximal. It is postulated that this disease occurs when the *Malassezia* yeasts that normally colonize the skin change from the round, yeast form to a pathologic mycelial form, which then invades the stratum corneum of the skin. Although pityriasis versicolor tends to be more prevalent in the summer months and in tropical locations than in temperate regions, evidence points to the importance of endogenous host factors in the development of the disease.
Pityriasis versicolor is diagnosed on the basis of its clinical appearance and the diagnosis can be confirmed by microscopy. Clinically, pityriasis versicolor can resemble other dermatologic disorders, and differential diagnosis should include vitiligo (particularly in patients with dark skin and hypopigmented lesions), tinea corporis (in this instance, the causative organism is a dermatophyte rather than a yeast as in pityriasis versicolor), SD, pityriasis rosea, pityriasis alba, chloasma, erythrasma, confluent and reticulated papillomatosis of Gougerot and Carteaud, pityriasis rotunda, secondary syphilis, and pinta. Although pityriasis versicolor is most commonly seen on the trunk and arms, it may also occur on the face, scalp, and other areas of the body, either in addition to the more common distribution of lesions or as the sole area of involvement.

The diagnosis of pityriasis versicolor can also be made using microscopy or Wood’s light examination (filtered UV light with a peak of 365 nm). A specimen for microscopy should be taken from the scaling edge of a lesion, as these areas are most likely to contain viable organisms. The keratin and debris in the specimen should be dissolved using either 10% to 15% potassium hydroxide or Albert’s solution. Staining of the residual fungal elements will reveal the presence of both hyphae and spores. It has been reported by some authors that the number of yeast and hyphae in the lesions of pityriasis versicolor is greater than in normal skin, whereas others have shown that the difference is not statistically significant.

In addition to microscopic examination, Wood’s light examination may be used where pityriasis versicolor lesions may fluoresce a characteristic bright yellow or gold color. The color of the fluorescence may also aid in differential diagnosis, as it is unique to the mycelial form of Malassezia. A positive Wood’s light examination response is seen in only one third of the cases, limiting the usefulness of this test. Recent evidence suggests that only M. furfur produces the indole compounds that fluoresce under Wood’s light, indicating that this species is implicated in at least some cases of pityriasis versicolor.

In general, it seems that the most common Malassezia species cultured from lesions of pityriasis versicolor are M. globosa and M. sympodialis. Other species such as M. slooffiae and M. furfur are relatively less common but not completely absent. The differences between the studies may be a result of geographic variation in species prevalence, although further investigation is required to confirm this hypothesis. However, there is evidence that these species are also common on both nonlesional skin of patients with pityriasis versicolor and on skin of control subjects, suggesting that the endogenous factors that promote the development of pityriasis versicolor in susceptible hosts do not necessarily favor the growth of some species over others.

MALASEZIA (PITYROSPORUM) FOLLICULITIS

Like pityriasis versicolor, Malassezia folliculitis is associated with a clear pattern of Malassezia colonization. Although the transformation of the yeast cells to their hyphal form is unique to pityriasis versicolor, histologic examination of patients with Malassezia folliculitis shows, as the name suggests, invasion of the hair follicles with large numbers of Malassezia yeasts. This invasion results in the development of erythematous papules, and sometimes pustules, which may be either asymptomatic or pruritic. M. furfur (orbiculare or ovale) is detected in follicular contents of steroid acne and acne vulgaris. Usually Malassezia yeasts are present along with staphylococci and propionibacteria in the follicles. Some authors claim that Malassezia folliculitis is actually a polymorphic disorder. They describe the most common lesion as a molluscoid, dome-shaped comedopapule (2-3 mm in diameter) with a central “dell” representing the follicle. However, they also report that in severe cases, patients may also have pustules, nodules, and cysts. It is important to note that these authors were working in a tropical climate (the Philippines), and that this may provoke more severe cases of Malassezia folliculitis than tend to occur in more temperate regions. In most cases of folliculitis, if the biopsy specimen is cut in serial sections, a typical dilated follicle will contain abundant round budding yeast cells and sometimes hyphae will also be found. Also, the organism is seen on direct microscopic examination, usually in the absence of other micro-organisms. These arguments strongly support the pathogenic role of Malassezia in this disease. Pityriasis versicolor has been shown to be more common in tropical countries and it is possible that the climate may also affect the severity of Malassezia-related diseases. Like pityriasis versicolor, Malassezia folliculitis occurs mainly on the back, chest, and upper aspects of the arms. In some geographic regions, particularly humid and tropical areas, the face is also commonly involved.

At a histologic level, Malassezia folliculitis is marked by the presence of an inflammatory infiltrate consisting of lymphocytes, histiocytes, and
AD, and the use of broad-spectrum antibiotics.49,93

Immuno-suppression as a result of heart transplant, other predisposing factors are diabetes mellitus, and are often full of keratinous material.83 It has also been suggested that the overgrowth of the yeasts is a secondary occurrence, permitted by the occlusion of the follicle.91

As with the other skin conditions associated with the Malassezia yeasts, the development of Malassezia folliculitis appears to have an immune component. It has been reported to occur in individuals who are immunosuppressed.90,92-94 Moreover, the eosinophilic folliculitis seen in patients with HIV and AIDS may also be marked by colonization of the follicles with Malassezia yeasts.95,96 Other predisposing factors are diabetes mellitus, immunosuppression as a result of heart transplant, and the use of broad-spectrum antibiotics.49,95

We could not find any literature examining the possibility that one or more species of Malassezia may be more commonly involved in Malassezia folliculitis. This may be because the available studies have taken samples from the skin surface using techniques that might not reach the yeasts located in the deeper aspects of the hair follicle.

AD

AD is a chronic inflammatory disorder marked by pruritus (often intense) and characteristic eczematous lesions with erythema, fine scaling, and thickening of the epidermis. Genetic factors are known to play an important role in the development of this disorder and many patients have a family history of AD, allergic rhinitis, asthma, or a combination of these. If both parents are carriers of the disease, the risk for children is as high as 70%.97 In many patients, AD is present from childhood and between 60% and 70% of patients with this childhood syndrome outgrow the disorder.98,99 In adults, the incidence of AD has been estimated to be 2%.98,99 Adult-onset AD is relatively uncommon. The incidence of AD is on the rise in Western countries.100

Malassezia yeasts appear to be a particularly important factor in the cause of AD in adults, especially those in whom the disease is localized to the head and neck.101-113 Malassezia yeasts have been cultured from 83% of adult patients with this form of AD,101 and it has also been shown that these patients respond to systemic ketoconazole.114

Because the yeasts are also frequently colonized from control subjects, it has been hypothesized that they act as allergens in patients who are susceptible, rather than as infectious agents.107,115 This hypothesis has been supported by the demonstration that patients with AD have positive patch test reactions to the yeasts.116 Recently, molecular work has also elucidated the structure of some allergens derived from Malassezia yeasts.117,118 There are several reports that have documented that patients with AD have higher levels of IgE antibodies.94,111,119-121 In these studies, specific Malassezia IgE antibodies were found in 20% to 100% of the patients with AD. Approximately 40% to 65% of patients with AD have IgE antibodies and/or skin reactivity against M furfur, and a higher T-cell response against this yeast is found in patients with AD than in healthy individuals.122 Zargari et al123 evaluated the presence of IgE antibodies to different Malassezia species in patients with AD, and concluded that the use of only one species of Malassezia species is not sufficient to detect all patients IgE-sensitized to Malassezia, and that various Malassezia species contained species-specific antigens. Koyama et al124 reported similar results. Several IgE binding components of Malassezia species have been isolated.117,125-130 There are 3 major allergen components that have been identified in Malassezia yeasts, two protein components of 67-kd and 37-kd each, and one carbohydrate component of 14-kd.130 Rasool et al122 cloned 5 different IgE-binding proteins (Mal f5, Mal f6, MF7, MF8, and MF9) from M furfur and found that all of the recombinant proteins had the ability to bind serum IgE from patients with AD. Another study indicates that a glycoprotein, Malg46b of M globosa, is dominantly expressed in this fungus and is a possible major antigen for IgE antibodies in patients with AD.131 Recent work has also indicated that AD is linked to a family of cytokine genes (IL-3, IL-4, IL-5, IL-13, and granulocyte-macrophage colony stimulating factor) located on chromosome 5q31-33.132,133

Because yeasts appear to be involved in only a subset of patients with AD, there has been little research into their role in this disease, compared with work done on the conditions described above. However, some studies have examined the prevalence and the species composition of Malassezia yeasts for patients with AD. Sandström et al115 sampled skin on the upper aspect of the back, and found that M sympodialis was the species most commonly isolated from both patients with AD and control
subjects. These investigators were able to sample both lesional and nonlesional skin and found a significant difference, with the yeasts being more common in nonlesional skin. Gupta et al\(^6\) found that the mean number of colony-forming units grown from samples taken from patients with AD was significantly lower than that obtained from sampling control subjects. In both groups, however, the dominant species was \textit{M sympodialis}, cultured in 51\% of the patients. Johansson et al\(^{108}\) found that cultures were positive in 56\% of patients with AD (70 of 125), and \textit{M sympodialis} was cultured in 40\% of the patients with positive culture. Sugita et al\(^{57}\) reported that \textit{M restricta}, \textit{M globosa}, and \textit{M furfur} are present in significantly higher frequencies in patients with AD than in control subjects.

Nakabayashi et al\(^1\) found that \textit{M furfur} was isolated more frequently from lesional skin (21\%) than from nonlesional skin (11\%) of patients with AD. However, this difference was not significant and the authors’ caution that the data are not sufficient to prove that \textit{M furfur} exacerbates AD. In addition, these authors found that \textit{M globosa} was cultured from 33\% of samples from nonlesional skin and only 14\% of samples from lesional skin. Gupta et al\(^6\) sampled lesional skin and found that \textit{M sympodialis} was the species most commonly isolated from both patients with AD and control subjects. Sandström et al\(^54\) found a difference in species distribution on lesional versus nonlesional skin in patients with AD; nonlesional skin was most frequently colonized by \textit{M globosa}, whereas \textit{M sympodialis} was most commonly found on lesional skin.

Sugita et al\(^4\) recently reported a new \textit{Malassezia} species, \textit{M dermatis}, from the skin of patients with AD. During examination of the cutaneous colonization of \textit{Malassezia} species for patients with AD, they found this new species on the surface of the patients’ skin. A total of 19 patients with AD were included in this study. A total of 5 strains of \textit{M dermatis} could be isolated from two patients. Three strains were isolated from a single patient, whereas the other two were found on one patient each. The physiologic characteristics of \textit{M dermatis} are identical to those of \textit{M furfur}, but taxonomically it is placed close to \textit{M sympodialis}. The sequence analysis of recombinant DNA from the 26S and ITS regions convinced these authors that the 5 strains represent a distinct species, rather than a variant of \textit{M sympodialis}.

Not only \textit{Malassezia}, but also bacteria, especially \textit{Staphylococcus aureus}, and other yeasts and filamentous fungi, such as \textit{Candida} species and \textit{Trichophyton rubrum}, have been correlated with AD.\(^{134-138}\) However, \textit{S aureus} infection is more likely to be a secondary cause of AD whereas \textit{Malassezia} yeasts are recognized as being the primary causative agent for AD.\(^{139}\)

PSORIASIS

The role of \textit{Malassezia} species in psoriasis is still undetermined, but several reports have associated these lipophilic yeasts with the development of skin lesions in psoriasis. Psoriasis is characterized by hyperproliferation and hyperkeratinization of the epidermis. The cases most commonly associated with the yeasts are those that tend to involve the scalp.\(^{140}\) Again, this hypothesis is supported by the response of scalp psoriasis to ketoconazole,\(^{141}\) and also by analysis of the association between scalp psoriasis and the presence of \textit{M ovalis} (possibly corresponding to the species \textit{M restricta}) yeasts on the scalp.\(^{142}\) However, it has recently been suggested that the \textit{Malassezia} yeasts may also play a role in psoriasis of the glans penis.\(^{143}\)

Clinically, the lesions of psoriasis may resemble those of SD; however, the histologic appearance of the lesions is distinct. Biopsy specimens taken from patients with SD show a spongiform appearance,\(^{144}\) although older lesions may lose this characteristic and begin to resemble psoriasis. These lesions are often characterized by the presence of follicular plugs of orthokeratotic and parakeratotic cells, and uneven rete ridges.

Psoriasis is also known to have a strong genetic component. Therefore, research has investigated immune reactions for patients with psoriasis. It has been shown that these individuals have immunologic responses to both \textit{Malassezia} yeasts and to proteins derived from them. T cells reactive to the yeasts have been isolated from lesional skin\(^{145}\) and it has been demonstrated that antibodies to the yeasts are present in serum taken from patients with psoriasis, but not from control subjects.\(^{146}\) Kanda et al\(^{147}\) found that \textit{Malassezia} yeasts induce Th-1—and Th-2—related cytokine, chemokine, and prostaglandin E2 production in peripheral blood mononuclear cells from patients with psoriasis vulgaris.

Gupta et al\(^6\) have found that, of the 6 \textit{Malassezia} species they recovered from all patients, \textit{M globosa} was most frequently isolated from patients with psoriasis and those with SD. This species was also isolated from the scalp, forehead, and trunk with equal frequency. However, a recent study has reported significant differences in the distribution of \textit{Malassezia} species between psoriatic and healthy scalp skin, and in the distribution of \textit{Malassezia} species according to the severity of the scalp involvement.\(^{148}\) They reported that \textit{M globosa} in its yeast phase was the predominant species (55\%) in patients with psoriasis, followed by \textit{M slooffiae}
(18%), and *M. restricta* (10%), the latter being the most common species isolated from healthy scalp skin.

OTHER DERMATOLOGIC DISORDERS

There have been a few scattered case reports in the literature associating *Malassezia* yeasts with various other skin conditions. In particular, *Malassezia* has been shown to be involved in at least some cases of confluent and reticulated papillomatosis.149-151 In one case, the patient was successfully treated using selenium sulfide, a traditional topical treatment for pityriasis versicolor. A possible link between *Malassezia* and transient acantholytic dermatosis has also been suggested,152 again on the basis of the response of the disorder to selenium sulfide. Finally, although up to 90% of cases of onychomycosis are caused by dermatophytes, there have been several reports in the literature153,154 of patients with onychomycosis from whom *Malassezia* yeasts have been isolated. Yeasts do not normally colonize nails, as they are not a good source of lipids. It is possible, however, that their presence in these cases represented a secondary infection in patients with onychomycosis.

TREATMENT

Most of the literature addressing the treatment of the conditions discussed in this article is concerned with those diseases most closely linked to *Malassezia* yeasts: pityriasis versicolor; SD/D; and *Malassezia* folliculitis. In the case of the other conditions, there are isolated reports of the efficacy of selenium sulfide (for confluent and reticulated papillomatosis and for transient acantholytic dermatosis) or ketoconazole (for AD and scalp psoriasis), as described above.

Malassezia yeasts are susceptible to a wide range of nonspecific and specific antifungal topical treatments, and several effective oral agents. Older treatments tend to lack antifungal activity and generally possess keratolytic properties. These agents include selenium sulfide, propylene glycol, and sulfur- and tar-containing compounds. However, the activity of selenium sulfide and propylene glycol can be accounted for by their antimicrobial activity.155-157 Zinc pyrithione is particularly effective in SD/D, because of both potent antimicrobial (effective against bacteria and fungi) and anti-inflammatory activities, killing *Malassezia* and causing a decrease in IL-1 release from cultured keratinocytes.158 Specific antifungal agents used for the topical treatment of *Malassezia* infections, particularly pityriasis versicolor and SD, include the azoles (ketoconazole, bifonazole, clotrimazole, itraconazole, fluconazole, miconazole, econazole, fenticonazole, metronida-
increasingly popular choice. Tacrolimus has been shown to have potent antifungal activity against *M. furfur* in vitro. It has been suggested that topical tacrolimus and pimecrolimus may be superior alternatives to corticosteroids, as they exhibit anti-inflammatory activity but do not have the side effects associated with long-term corticosteroid use.

Both pityriasis versicolor and SD/D tend to recur in patients who are vulnerable, often with a seasonal pattern. Similarly, AD and psoriasis, although varying in severity over time, are chronic skin diseases, with no permanent cures. When considering topical therapies for long-term prophylaxis, they should be cosmetically acceptable enough to assist in compliance.

Topical ketoconazole or miconazole may be effective in preventing relapse of SD when used prophylactically once weekly or twice monthly, respectively. Oral itraconazole may be effective in preventing relapse of SD when used prophylactically once monthly or twice monthly, respectively. Oral itraconazole may be effective in the prophylaxis of pityriasis versicolor. Faergemann et al reported that in a 6-month study, itraconazole (400 mg) administered once monthly was effective in the prophylaxis against the recurrence of pityriasis versicolor, in comparison with placebo. Ketoconazole has also been used effectively in prophylactic regimens for pityriasis versicolor, with either single monthly doses of 400 mg or 200 mg once daily for the first 3 days of each month.

There is a possibility that the antifungals are helping not just through antiyeast action but by anti-inflammatory mechanisms as well. Thus, research into the immunologic aspects of these diseases may eventually result in a new approach to therapy. In addition, the possibility that only certain *Malassezia* species may be implicated in certain disorders may also have therapeutic relevance. Because the yeasts have different physiologic properties, it may be possible to develop therapies that selectively target the causative species by altering the environment on the host's skin. Emollients or lotions that alter the lipid composition on the skin may also affect the amount and kind of *Malassezia* yeasts found on the skin.

CONCLUSIONS

Our knowledge about the pathogenesis of *Malassezia*-related diseases has increased tremendously during the last decade. Although 7 of the 8 lipophilic *Malassezia* species can be isolated, with varying frequency, from human skin, it appears that the pathologic response is species-specific. The ninth species, *M. pachydermatis*, does not need a source of lipid to sustain growth, is able to grow on routine laboratory media, and is rarely implicated in disease of human beings who are immunocompetent. Both endogenous and exogenous host factors clearly play a role in the disorders caused by *Malassezia* (pityriasis versicolor, *Malassezia* folliculitis, and SD/D). In AD and psoriasis, evidence suggests that the *Malassezia* yeasts cause an allergic or an inflammatory response on the part of the human host. Several studies have explained the pathogenic mechanism of SD/D, AD, and folliculitis related to *Malassezia* species. This article has reviewed the literature on the involvement of *Malassezia* yeasts in cutaneous disorders and discussed the possibility that different species of these yeasts have different clinical profiles. However, there are several aspects of the immune system, genetics, and skin that remain to be understood with reference to *Malassezia* species. With the help of new molecular approaches, important data are being generated to help understand the pathogenesis of *Malassezia*-related diseases. More species-specific research is required to clarify the role of individual members of the genus *Malassezia* in particular skin disorders.

REFERENCES

11. Theelen B, Silvestri M, Guého E, Van Belkum A, Boekhout T. Identification and typing of *Malassezia* yeasts using amplified fragment length polymorphism (AFLP), random amplified
polymorphic DNA (RAPD) and denaturing gradient gel electrophoresis (DGGE), FEMS Yeast Res 2001;1:79-86.
25. McGrath J, Murphy GM. The control of seborrhoeic dermatitis and dandruff by antipityrosporal drugs. Drugs 1991;41:178-84.
31. Piéard GE, Arrese JE, Pîerard-Franchimont C, De Doncker P. Prolonged effects of antidiandruff shampoos—time to recur-}

