Togninia (Calosphaeriales) is confirmed as teleomorph of Phaeoacremonium by means of morphology, sexual compatibility and DNA phylogeny

Lizel Mostert
Dipartment of Plant Pathology, University of Stellenbosch, P. Bag X1, Matieland 7602, South Africa

Pedro W. Crous¹
Centraalbureau voor Schimmelcultures, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands

J. Z. (Ewald) Groenewald
Dipartment of Plant Pathology, University of Stellenbosch, P. Bag X1, Matieland 7602, South Africa

Walter Gams
Richard C. Summerbell
Centraalbureau voor Schimmelcultures, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands

Abstract: Petri disease, or black goo, is a serious disease of vines in most areas where grapevines are cultivated. The predominant associated fungus is *Phaeomoniella chlamydospora* (Chaetothyriales). Several species of *Phaeoacremonium* (*Pm.*) also are associated, of which *Pm. aleophilum* is the most common. Although no teleomorph is known for *Phaeoacremonium*, the genus *Togninia* previously has been linked to phaeoacremonium-like anamorphs. To investigate the possible anamorph-teleomorph connection of *Phaeoacremonium* to *Togninia*, anamorphs of *Togninia minima*, *T. fraxinopennsylvanica* and *T. nova-zealndiae* morphologically were compared with *Pm. aleophilum* and some representative cultures were mated in all combinations. Although no interspecies mating proved fertile, matings between isolates of *Pm. aleophilum* produced a *Togninia* teleomorph within 3–4 weeks. Certain field isolates of *Pm. aleophilum* commonly produced the teleomorph, demonstrating that both mating types can occur in the same vine and thus also explaining the genetic diversity observed for this fungus in some vineyards. To elucidate the phylogenetic relationships among these taxa, isolates were subjected to sequence analysis of the nuclear ribosomal internal transcribed spacers (ITS1, ITS2) and the 5.8S rRNA gene, as well as portions of the translation elongation factor 1 alpha (EF-1α) gene. The generic placement of teleomorphs within *Togninia* (Calosphaeriales) further was confirmed via phylogenetic analyses of 18S small subunit (SSU) DNA. From these sequences, morphological and mating data, we conclude that *T. minima* is the teleomorph of *Pm. aleophilum*, and that it has a biallelic heterothallic mating system. An epitope and mating type tester strains also are designated for *T. minima*.

Key words: Calosphaeriales, EF-1α, ITS, 18S SSU DNA, sexual compatibility, systematics

INTRODUCTION

Petri disease is a well-known disease of grapevines worldwide (Mugnai et al 1999). Affected grapevines exhibit a slow dieback as well as stunted growth. The predominant associated fungus is *Phaeomoniella chlamydospora* W. Gams, Crous, M.J. Wingf. & L. Mugnai (Chaetothyriales, Herpotrichiellaceae). Whether this fungus is the sole or only a contributing causal agent of the disease is uncertain. Several species of *Phaeoacremonium* (*Pm.*) (Diaporthales, Magnaportheaceae) also commonly grow from vines affected by Petri disease, including *Pm. aleophilum* W. Gams, Crous, M.J. Wingf. & L. Mugnai, *Pm. angustius* W. Gams, Crous & M.J. Wingf., *Pm. in¯atipes* W. Gams, Crous & M.J. Wingf., *Pm. mortoniae* Crous & W. Gams, *Pm. parasiticum* (Ajello, Georg & C.J.K. Wang) W. Gams, Crous & M.J. Wingf., *Pm. rubrigenum* W. Gams, Crous & M.J. Wingf., and *Pm. viticola* Dupont. Of the *Phaeoacremonium* species associated with Petri disease, *Pm. aleophilum* consistently has been the most frequently isolated (Scheck et al 1998, Ari 2000, Gatica et al 2001). In various studies, *Pm. aleophilum* has been found to be associated with brown-streaking symptoms in Petri-diseased grapevines (Mugnai et al 1999, Ari 2000) and sectorial brown necrosis (Gatica et al 2001).

The genetic variation within populations of *Phaeomoniella chlamydospora* and *Pm. aleophilum* has been studied by various workers (Péros et al 2000, Tegli et al 2000a, b). Using RAPDs (Random Amplified Polymorphic DNA) and RAMS (Random Amplified Micro- or Mini-Satellites), Tegli et al (2000b) showed that considerable variation existed among isolates of *Pm. aleophilum* collected from the same field, sug-
gesting that sexual reproduction might occur (Tegli 2000). Considerable genetic variation suggestive of ongoing recombination also was found in Universally Primed-PCR studies done with Pm. aleophilum isolates from Australia (Cottral et al 2001). Rooney et al (2002) subsequently reported inducing telemorphs for Pm. inflatipes and Pm. aleophilum under laboratory conditions.

In a study of the genus Togninia Berl. (Calosphaeriales), Hausner et al (1992) treated Togninia minima (Tul. & C. Tul.) Berl. (lectotype of Togninia) and at the same time they described two new species, T. fraxinopennsylvanica (Hinds) Hausner, Eyjólfsdóttir & J. Reid and T. novae-zealandiae Hausner, Eyjólfsdóttir & J. Reid. Although no cultures of T. minima were available, the two newly described species were cultured and were shown to produce anamorphs that were intermediate between Acremonium Link : Fr. and Phialophora Medlar. Several anamorph genera in recent years have been described with this approximate appearance (Gams 2000). Of these, the genus Phaeoacremonium W. Gams et al closely fits the description of the Togninia anamorphs illustrated by Hausner et al (1992).

The first aim of the current study was to investigate the possible link between Phaeoacremonium and Togninia. Phaeoacremonium aleophilum, a species similar in appearance to the anamorphs illustrated by Hausner et al (1992), was chosen for morphological comparison with the anamorphs of T. minima, T. fraxinopennsylvanica and T. novae-zealandiae. A further aim was to determine if the formation of a telemorph could be elicited in Pm. aleophilum. This was done by mating a selection of vine isolates in culture. A final aim was to elucidate the genetic diversity within and among these species and to clarify the higher-order phylogenetic placement of Togninia. To address this, a phylogenetic analysis was conducted using sequences of the nuclear ribosomal DNA region encompassing the internal transcribed spacers (ITS1, 5.8S and ITS2), as well as translation elongation factor 1 alpha (EF-1α), and 18S ribosomal small subunit (SSU).

MATERIALS AND METHODS

Morphology.—Field isolations were made from rooted nursery plants and older, diseased grapevines, from which single-conidial isolates were obtained (Table I). Anamorph morphology was studied on 2% malt-extract agar (MEA; Biolab, Midrand, South Africa), while perithecia were induced on twice-autoclaved pieces of grapevine cane placed on 2% water agar (Biolab) (GWA). Cultures were incubated at 22°C under a 12 h fluorescent white light/dark regime. For microscopy, material was mounted in lactic acid. Thirty measurements were taken of each type of morphological structure, and averages and 95% confidence intervals were determined for spore dimensions. Measurements are given with minimum and maximum ranges in parentheses.

Vertical sections (10 μm) of fruiting bodies were cut with a Leica CM1100 freezing microtome. Colony colors were determined according to Rayner (1970). Cultures are maintained in the collection of the Department of Plant Pathology at the University of Stellenbosch, and representative strains have been deposited at the Centraalbureau voor Schimmelcultures (CBS, Utrecht, the Netherlands). Reference strains of T. fraxinopennsylvanica (CBS 110212, ex-type), T. novae-zealandiae (UAMH 9589, UAMH 9590, ex-type) and T. minima (CBS 213.31, ex-type of Longoa paniculata Curzi) also were studied.

Matings.—Twenty-one Pm. aleophilum isolates were grown on MEA plates for 2 wk, using 10 plates per isolate. Conidia were dislodged from the agar surface by means of a glass rod, and suspensions were prepared in 5 mL sterile distilled water. Two aliquots of 100 μL each, representing two different isolates, were pipetted onto the canes of GWA plates. Isolates were mated in all possible combinations. Controls consisted of a 200 μL aliquot of one isolate only. Plates were incubated at 22°C under continuous white light. Successful crosses were noted 3–4 wk after mating. For a mating to be considered successful, perithecia had to produce large quantities of ascospores that germinated readily in culture. One such mating was chosen (LM 54 × LM 463), and 20 single ascospore isolates obtained (LM 227–LM 240, LM 243–LM 247, LM 249). Further crosses were made with these ascospore isolates using the procedure described above. Two strains found to be of opposite mating type arbitrarily were designated as MAT1-1 (LM 463) and MAT1-2 (LM 54). Inter-species matings were done to investigate the biological species boundaries of Pm. aleophilum, T. minima, T. novae-zealandiae and T. fraxinopennsylvanica.

DNA isolation and amplification.—Twenty-seven Pm. aleophilum isolates were selected for sequence comparisons (Table I). Sequences of the ITS, EF-1α and SSU of T. fraxinopennsylvanica (CBS 110212), T. novae-zealandiae (UAMH 9589 and UAMH 9590), T. minima (CBS 213.31) and an unknown Phaeoacremonium sp. (STE-U 3394) also were included. Genomic DNA was extracted using the isolation protocol of Lee and Taylor (1990). In studies intended to determine the degree of genetic diversity within Pm. aleophilum, the 5.8S nuclear ribosomal RNA gene and the flanking internal transcribed spacers (ITS1 and ITS2) were amplified with primers ITS1 and ITS4 (White et al 1990) and translation elongation factor 1 alpha (EF-1α) was amplified with primers EF1-728F and EF1-986R (Carbone and Kohn 1999). These PCR amplification cycles run on a GeneAmp PCR System 2700 (Perkin-Elmer, Norwalk, Connecticut) were for both regions: 96°C for 5 min, followed by 36 cycles of (1) denaturation (94°C for 30 s), (2) annealing (50°C for 30 s) and (3) elongation (72°C for 90 s), and a final 7 min extension step at 72°C.

In studies intended to determine the higher order phylogeny of Togninia, primers NS1 and NS4 (White et al 1990) were used to amplify the 5′ end of the 18S ribosomal
<table>
<thead>
<tr>
<th>Species</th>
<th>Culture No.</th>
<th>GenBank No.</th>
<th>Host and location</th>
</tr>
</thead>
</table>
| *Togninia minima* (Anamorph: *Pm. aleophilum*) | LM44
LM45
LM46
LM47
LM48
LM49 = CBS 110701
LM50 = CBS 110831
LM51
LM53 = CBS 110702
LM54 = CBS 110703
LM56 = CBS 110705
LM58
LM61
LM65 = CBS 110711
LM76 = CBS 110827
LM77
LM78
LM467
LM468 = CBS 110753
LM458 = CBS 111014
LM463 = CBS 111015
LM4 = CBS 110707
LM5 = CBS 110830
LM12 = CBS 110828
LM23 = CBS 110835
LM34 = CBS 110708
LM74 = CBS 110709
LM119 = CBS 110834
LM466
LM440
CBS 246.91
CBS 100402
CBS 101006
CBS 101357
CBS 100400
CBS 100399
CBS 100398
LM24 = CBS 110833
LM44
LM52 = CBS 110832 | AY179930
AY179935
AY179929
AY179932
AY179933
AY179928
AY179937
AY179936
AY179925
AY179927
AY179934
AY179938
AY179939
AY179942
AY179941
AY179940
AY179931
AY179923
AY179950
AY179951 | AY179896
AY179901
AY179895
AY179898
AY179899
AY179894
AY179903
AY179902
AY179891
AY179893
AY179900
AY179904
AY179905
AY179908
AY179907
AY179906
AY179907
AY179906
AY179907
AY179908 | *Vitis vinifera*, Paarl, South Africa
Vitis vinifera, Paarl, South Africa
DNA (SSU) gene for a subset of four isolates representing the different *Togninia* species and *Pm. aleophilum*. The cycling conditions consisted of an initial denaturation step of 94°C for 7 min, followed by 36 cycles of (1) denaturation (95°C for 45 s), (2) annealing (55°C for 60 s) and (3) elongation (72°C for 120 s), and finally a 2 min extension step at 72°C.

PCR products were analyzed by electrophoresis at 85 V for 30 min in a 0.8% (w/v) agarose gel in 0.5× TAE buffer (0.4 M Tris, 0.05 M NaAc, and 0.01 M ethylene diamine tetraacetic acid [EDTA], pH 7.85) and visualized under UV light with a GeneGenius Gel Documentation and Analysis System (Syngene, Cambridge, United Kingdom) following ethidium bromide staining.

PCR products were purified according to the manufacturer’s instructions using a commercial kit (Nucleospin Extract 2 in 1 Purification Kit, Machery-Nagel GmbH & Co., Germany). Sequencing reactions were carried out with ABI PRISM Big Dye Terminator version 3.0 Cycle Sequencing Ready Reaction Kit (PE Biosystems, Foster City, California), according to the manufacturer’s recommendations, and were analyzed on an ABI Prism 3100 DNA Sequencer (Perkin-Elmer, Norwalk, Connecticut). Sequences were deposited at GenBank (TABLE I), and the alignment was deposited in TreeBase (ITS and EF-1α: SN1269–3614; SSU: SN1269–3617).

Phylogenetic analysis.—Raw sequence data were analyzed using EditView 1.0.1 (http://www.appliedbiosystems.com), and sequences were manually aligned by inserting gaps. Phylogenetic analyses were conducted using PAUP (Phylogenetic Analysis Using Parsimony) version 4.0b10 (Swofford 2000). Gaps were treated as a fifth character, and all characters were unordered and of equal weight. *Phialophora richardsiae* (Nannf.) Conant (CBS 270.33, GenBank ITS = AY179948, EF-1α = AY179914) and *Cercospora apii* Fresen. (CBS 119.25, GenBank ITS = AY179949, EF-1α = AY179915) were used as outgroups for both the EF-1α and ITS analyses. Six *Pm. aleophilum* isolates (LM 44, LM 52, LM 75, LM 83, LM 113, and LM 115) were excluded from the combined analyses. Their respective EF and ITS sequences were 100% similar to the sequences of LM 24, LM 441, LM 466, LM 443, LM 440, LM 463, LM 460, LM 34 and LM 5. Maximum-parsimony analysis was performed using the heuristic search option with a 1000 random-taxon additions and tree bisection and reconstruction (TBR) as the branch-swapping algorithm. Bootstrap support for the ITS and EF-1α analysis for internal branches was evaluated from 1000 heuristic search replicates and 1000 random taxon additions. Tree length, consistency index (CI), retention index (RI) and the rescaled consistency index (RC) values also were calculated. A partition homogeneity test in PAUP (Swofford 2000) was conducted to test the congruence between the ITS and EF-1α sequence datasets. Small subunit sequences were added to an alignment obtained from TreeBase (M911). Sequences representative of the different orders within the class Sordariomycetes, as well as the order Chaetothyriales (Chaetothyriomycetes), were retrieved from GenBank and added to the alignment. Neighbor-joining analyses of the SSU alignment (using uncorrected “p”,
Kimura-2-parameter and Jukes-Cantor substitution models were done with PAUP version 4.0b10 (Swofford 2000). *Rhodosporidium toruloides* Banno and *Athelia bombicina* Pers. were used as outgroups for the neighbor-joining analysis.

RESULTS

Morphology.—In culture, *T. minima* strain CBS 213.31 produced a *Phaeoacremonium* anamorph similar to *Pm. aleophilum*, but distinct from the *Phaeoacremonium* anamorphs associated with *T. fraxinopennsylvanica* and *T. novae-zelandiae*. A detailed description of *T. minima*, based on the teleomorphs formed by isolates of *Pm. aleophilum* (TABLE I), as well as the material designated by Hausner et al (1992), is provided below:

Togninia alnicola (Ellis & Everh.) Berl., Icon. Fung. 3: 10. 1900.

Mycelium consisting of branched, septate hyphae; hyphae occurring singly or in strands of up to 10, tuberculate (with warts to 1 μm) to verruculose, pale brown, becoming paler toward the conidiogenous region, 1.5–3 μm wide. *Chlamydospores* absent. *Perithecia* heterothallic, mostly aggregated, not valvate, sometimes solitary, mostly subepidermal also on the surface of the epidermis; *perithecium* subglobose, sometimes obpyriform, with a long cylindrical neck, (160–)250–285(–420) μm diam and basal part (200–)285–325(–400) μm tall. Wall consisting of two regions of *textura angularis*: outer region dark brown, cells smaller and more rounded than inner layer, approx. 8–10 cells thick (individual cells not visible further outward), 20–40 μm thick; inner region hyaline (centrum) to pale brown, 5–7 cells and 12–28 μm thick; surface covered with brown, septate hyphal appendages that become hyaline towards their tips (more abundant on older perithecia). *Perithecial necks* black, 1–3(–6) per perithecium, curved, verrucose, with apex often proliferating secondarily upon aging and then appearing nodulose; nodules (~120 μm wide) also appearing lower down on the neck; necks 800–1800 (av. 1055) μm long, 35–130 (av. 69) μm wide at the base, and 20–60 (av. 41) μm wide at the apex, neck sometimes dividing into two near the apex. Multinecked perithecia often with a thin wall dividing the perithecial chamber. *Paraphyses* hyaline, septate, cylindrical, narrowing towards the tip, 45–125 (av. 83) μm long, 2–4 μm wide at the base and 1.5–2 μm at the apex, persistent. Ascii arising in acropetal succession from sympodially proliferating ascogenous hyphae that appear spicate when mature, hyaline, clavate, with bluntly rounded apices and with sides straight or tapering towards the truncate or bluntly obtuse bases (17–)19–20–(27) × 4–5 μm; *apical complex* 0.5–1 μm thick, of indistinct structure, with a nonamylloid apical ring (negative in Melzer’s reagent). *Ascospores* hyaline, cylindrical, smooth-walled, 2–3 μm wide (inflated bases −5 μm wide). *Ascospores* I-celled, hyaline, oblong-ellipsoidal to allantoid with rounded ends, sometimes containing small guttules at the ends, (4–)4.5–5–6.5 × 1–2 μm (av. 5 × 1.5 μm).

Conidiophores mostly micronematous, arising from aerial or submerged hyphae, erect, simple, frequently reduced to conidiogenous cells, rarely 1–2-septate, subcylindrical, pale brown, paler towards the tip, smooth to verruculose, straight to gently curved, 4–40 μm tall, 2–3 μm wide. *Conidiogenous cells* terminal or lateral, mostly monophialidic, subcylindrical to narrowly ellipsoidal, smooth to verruculose, subhyaline, 3–21 μm long, 1.5–2.5 μm wide at the base, 1–1.5 μm wide at the apex, with a terminal, inconspicuous, almost convergent, 0.5–1 μm long, 1 μm wide collar-like. *Conidia* aggregating in slimy heads, hyaline, oblong-ellipsoid to allantoid, when larger oblong to reniform, becoming 2-guttulate with age, (2.5–)3–4.5(–7) × 1.5–2.5(–3) μm (av. 4 × 2 μm).

Type specimens. YUGOSLAVIA. On roots and stems of *Vitis vinifera* 1990, M. Munitaño-Cvetkovic (CBS 246.91 dried specimen and ex-type culture of *Pm. aleophilum*). SOUTH AFRICA. WESTERN CAPE PROVINCE: Wellington and Paarl, respectively, stems of *Vitis vinifera*, 2001, L. Mostert, LM 463 (MAT1-1 = CBS 111015) × LM 54 (MAT1-2 = CBS 110703),

Notes. No information previously has been available regarding the anamorph of T. minima. The only culture currently available that previously has been identified as T. minima is CBS 213.31. It differs from freshly isolated strains of Pm. aleophilum in several morphological characters. Phaeoacremonium aleophilum isolates in general have buff (19°d) to honey (21°b) colonies, while colonies of CBS 213.31 are white to buff (19°d) with woolly mycelial tufts. The difference might be due to cultural degeneration. Conidiogenous cells (1.5 μm at the base) and conidia (1 μm wide) of CBS 213.31 were slightly narrower than those of Pm. aleophilum (2.5 and 2 μm, respectively).

Phaeoacremonium aleophilum differs from anamorphs of T. fraxinopennsylvanica and T. novae-zealandiae. Conidia of T. fraxinopennsylvanica and T. novae-zealandiae were up to 9 and 10.5 μm long, respectively, significantly longer than those of Pm. aleophilum, which did not exceed 7 μm. Also, the collarettes of T. fraxinopennsylvanica and T. novae-zealandiae (1.0–1.8 μm) were longer than those of Pm. aleophilum (0.5–1 μm).

Matings.—Perithecia produced by crossing Pm. aleophilum isolates were contrasted with those described for T. minima, T. fraxinopennsylvanica and T. novae-zealandiae (TABLE II). No interspecies mating was observed, nor were any matings obtained with CBS 213.31. The teleomorph of Pm. aleophilum was identical, however, to that described by Hausner et al. (1992) for T. minima. Furthermore, ascospores of T. minima are longer and perithecia are wider and have longer necks than those of T. fraxinopennsylvanica and T. novae-zealandiae (TABLE II).

Of the 21 isolates of Pm. aleophilum that were mated, 10 belonged to one mating type and 11 to the other (FIG. 25). The bi-allelic heterothallic mating system suggested by these results was verified with crosses among the F1 ascospore progeny. Of 20 single-spore isolates used from one peritheium, 10 grouped in one mating type and 10 in the other, thus agreeing with a 1:1 Mendelian segregation of mating type (FIG. 26).
TABLE II. Perithecial morphology of the various Togninia species studied

<table>
<thead>
<tr>
<th>Species</th>
<th>Perithecial shape and dimensions (µm)</th>
<th>Ascospore shape and dimensions (µm)</th>
<th>Perithecial dimensions (µm)</th>
<th>Neck length (µm)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. minima</td>
<td>Allantoid</td>
<td>5.0±6.5 × 3±5.5</td>
<td>20±30</td>
<td>4.5±6</td>
<td>Tulasne and Tulasne (1863)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>17±19</td>
<td>4±4</td>
<td>Hausner et al (1992)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>19±17</td>
<td>4±4</td>
<td>Hausner et al (1992)</td>
</tr>
<tr>
<td>T. novae-zealandiae</td>
<td>Ellipsoidal to oblong-ellipsoidal, slightly rounded at the ends</td>
<td>3.8±5.6 × 1.6±1.8(±2) × 4.5</td>
<td>15.5±24 × 4.7±5.5(6.5)</td>
<td>3±5.6× 1.8±1.2±2.6</td>
<td>Present study</td>
</tr>
</tbody>
</table>

Phylogenetic analysis.—The combined alignment (ITS and EF-1α) had a total length of 863 characters, of which 301 were constant, 329 were parsimony uninformative and 233 were parsimony informative. The result of the partition homogeneity test showed that the ITS and EF-1α datasets were congruent (P = 0.72) and therefore could be combined. Parsimony analysis of the combined datasets, using a heuristic search with 1000 random taxa additions, resulted in 10 most-parsimonious trees (Tree length = 901 steps, CI = 0.937, RI = 0.903, RC = 0.846 and HI = 0.063). Togninia minima (CBS 213.31) grouped in the clade with all Pm. aleophilum sequences, as well as the ex-type strain of Pm. aleophilum. The analysis clearly delimits the three Togninia species with good bootstrap support (Fig. 27). Some variation was observed within the Pm. aleophilum clade, as two isolates (CBS 100400, 101357) formed a subclade with 100% bootstrap support within the Pm. aleophilum clade. These two isolates differed from the rest of the Pm. aleophilum isolates at 11 (for EF-1α) and two (for ITS) nucleotide positions. Another group within the Pm. aleophilum clade also received significant support (87%). These sequences, however, differed from the other isolates in the Pm. aleophilum clade at only two nucleotide positions in the EF-1α dataset. A total of 21 characters proved variable in the combined dataset (2.4%). The EF-1α area was found to be more variable (15 nucleotides, 4.6%) than the ITS area (6 nucleotides, 1.1%).

In the phylogram of the SSU sequence data (Fig. 28), Pm. aleophilum, Togninia minima (CBS 213.31), T. fraxinopennsylvanica and T. novae-zealandiae grouped together, forming the Calosphaeriales clade (Sordariomycetes) (100% bootstrap). Magnaporthe grisea (T.T. Hebert) M.E. Barr, as well as a teleomorph of Harpophora W. Gams (Gaemumamnomyc graminis (Sacc.) Arx & D.L. Olivier, Magnaporthaceae, incertae sedis), formed a well-supported subclade (100% bootstrap) within the class Sordariomycetes. Phialophora verrucosa Medlar, anamorphic Capronia semiimmersa (Cand. & Sulmont) Unter. & F.A. Naveau clustered with Capronia spp. (Chaetothyriales) with 100% bootstrap support.

DISCUSSION

Togninia is accepted as being typified by T. minima (Clements and Shear 1931). This viewpoint has been followed by Hausner et al (1992), as explained in Holm (1992), and also is accepted by Barr (M. E. Barr pers comm, 20 Feb 2002), contrasting with her earlier view (Barr et al 1993) that Togninia was a synonym of Pleurostoma Tul. & C. Tul. A more complicated issue addressed by Hausner et al (1992) was
FIG. 25. Schematic representation of a mating study with single conidial isolates of *Phaeoacremonium aleophilum*. A (−) indicates that no perithecia formed, while (+) indicates formation of perithecia that exuded copious amounts of fertile ascospores.

whether the genus name *Togninia* had precedence over *Erostella*. *Erostella* first was described as subgenus of *Calosphaeria* Tul. & C. Tul., and subsequently was elevated to generic level as *Erostella* (Sacc.) Trav. (1905) and again as *Erostella* (Sacc.) Sacc. (1906). Both *Erostella* and *Togninia* have *Calosphaeria minima* Tul. & C. Tul. as lectotype. The key to resolving this mystery lies in the precise interpretation of the Latin description of *Togninia* provided by Berlese (1900), who placed 12 species and one variety in this genus. The decision of Clements and Shear (1931) to designate *T. minima* as lectotype of *Togninia* is not obviously supported by Berlese’s text. Berlese (1900, p. 20), stated “*C. [calosphaeria] herbicola* E.[llis] et E.[verhart] id. *C. ambigua* Berl.[ese] est novi generis *Togninia* typus.” Two interpretations of this text are possible. The first is that Berlese actually typified *Togninia* by *T. ambigua* Berl.; in this case the lectotypification of Clements and Shear (1931) should be rejected and *Erostella* can be resurrected for the taxa treated by Hausner et al (1992), with *Calosphaeria minima* as lectotype. The second interpretation,

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LM44</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>LM45</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>LM46</td>
<td>+</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>LM47</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>LM48</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>LM49</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM50</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>LM51</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM52</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>LM53</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>LM54</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>LM55</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>LM56</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM57</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM58</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>LM59</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM60</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM61</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>LM62</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM63</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>LM64</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM65</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM66</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>LM67</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LM68</td>
<td>−</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 26. Schematic representation of crosses from single ascospores of *Togninia minima* obtained from a fertile mating (LM 54 × LM 463). A (−) indicates that no perithecia formed, while (+) indicates formation of perithecia that exuded copious amounts of fertile ascospores.
which was explained by Holm (1992) and subsequently followed by Hausner et al. (1992), is that Berlese did not consider *C. herbicola* to be synonymous with *C. ambigua*. Under the genus *Togninia*, Berlese (1900, p. 9) listed only *T. ambigua*, while he transferred *C. herbicola* to *Jattaea* on p 8 but *C. minima* to *Togninia* on p 11. The Latin “id.”, “idem”, means “the same as”, but it also has been translated as “ditto”, which is more appropriate here, as Berlese (1900) clearly did not treat *C. herbicola* as synonymous with *C. ambigua* but actually placed them in different genera. The species in this *Calosphaeria* complex are thus “novi generis *Togninia typus*”, meaning that they are of the *Togninia*-type (Holm 1992), and consequently the lectotypification of *Togninia* with *T. minima*, as proposed by Clements and Shear (1931), can be accepted.

Because no authentic material of *T. minima* exists, Hausner et al. (1992) designated the original illustration (Tulasne and Tulasne 1863) as iconotype. *Togninia* thus is conceived as a genus that has solitary to clustered, globose perithecia with papillate to beak-like apices that can be smooth or ornamented. Asci are unitunicate with truncate bases and thickened apices, appearing in a spicate arrangement on ascosogenous hyphae. Paraphyses are present, hyaline, septate, and ascospores are hyaline, aseptate, allantoid to ellipsoidal. Anamorphs are acremonium- to phi-
alophora-like (Hausner et al 1992). Hausner et al (1992) based their redescription of *T. minima* in part on two specimens, one collected from *Alnus* in the United States (N.A.F. 2514) and another from *Prunus pennsylvanica* collected in Canada (SSMF 725–7179). No cultures, however, were available for study. Clements and Shear (1931) treated *Longoa* Curzi as synonym of *Calosphaeria*, a genus that is heterogeneous (M. E. Barr pers comm). In her revision of the *Calosphaeriales*, Barr (1985) did not treat *Longoa*, but based on its morphology Eriksson and Hawksworth (1986) considered the type species, *Longoa paniculata* (CBS 213.31, ex-type), to be a synonym of *T. minima*. This synonymy is supported by the original description and molecular data obtained in this study.

A comparison of our fungus with the original descriptions of *Togninia* provided by Tulasne and Tulasne (1863) and Berlese (1900), as well as with the redescription of Hausner et al (1992), shows that our fungus clearly belongs in *Togninia*. Furthermore, its generic relationship with *T. fraxinopennsylvanica* and *T. novae-zealandiae* is confirmed via the tight cluster seen in 18S SSU sequence data (Fig. 28).

Before any teleomorph was known for *Phaeoacremonium*, the genus was considered to have affinities for the Magnaporthaceae (Dupont et al 1998). Members of this family generally are characterized by hav-
ing long, hairy necks and septate ascospores (Kirk et al. 2001). The family is considered to be close to the Diaporthales (Winka and Eriksson 2000). The Togninia teleomorphs of Phaeoacremonium differ strongly from those of other Magnaportheae fungi. In addition, our 18S rDNA sequence analysis shows that the Togninia and Phaeoacremonium species investigated here form a distinct clade apart from the Diaporthales (Fig. 28), supporting their placement in the order Calosphaeriales for reasons outlined by Barr (1985). Phylogenetic analyses of DNA sequence data have shown that T. minima forms a separate cluster with T. fraxinopennsylvanica and T. novaezelandiae, as well as other species presently known in Phaeoacremonium (Groenewald et al. 2001). Togninia teleomorphs also have been induced for several other Phaeoacremonium spp., which await further description once their mating strategies have been resolved.

Results from mating studies clearly have shown that T. minima has a biallelic heterothallic mating system. Such systems in fungi have been reviewed by Glass and Nelson (1994). Field isolates obtained from individual diseased vines could be induced to form the teleomorph in vitro on cane sections, indicating that compatible mating types co-occur in nature on the same vine. The conditions necessary for perithecial formation in the field remain unknown. The extent to which teleomorphs occur in the field also is unknown. The discovery of the teleomorph is important for the design and deployment of disease-control strategies, as well as for the overall understanding of the epidemiology of Petri disease.

ACKNOWLEDGMENTS

The authors acknowledge Winetech and the South African National Research Foundation (NRF) for financial support. Dr. Margaret E. Barr (B.C., Canada) is thanked for her comments on the status of the Calosphaeriales, while Drs. James Reid and Georg Hausner (Univ. Manitoba, Canada) are thanked for their numerous letters, for providing copies of all their correspondence related to the Togninia/Erostella arguments and for taking the trouble to revive ex-type cultures of the species treated in their study.

LITERATURE CITED

Mugnai L, Graniti A, Surico G. 1999. Esca (black measles)

