Description and pathogenicity of *Cylindrocladium ovatum* sp.nov.¹

N. E. EL-GHOLL

Department of Agriculture and Consumer Services, Division of Plant Industry, P.O. Box 147100, Gainesville, FL 32614-7100, U.S.A.

A. C. ALFENAS

Universidade Federal de Viçosa, 36570 Viçosa MG, Brazil

P. W. CROUS

University of Stellenbosch, Department of Plant Pathology, Stellenbosch 7600, South Africa

AND

T. S. SCHUBERT

Department of Agriculture and Consumer Services, Division of Plant Industry, P.O. Box 147100, Gainesville, FL 32614-7100, U.S.A.

Received July 29, 1992


*Cylindrocladium ovatum* EL-Gholl, Alfenas, Crous, et Schubert sp.nov., the cause of a leaf spot disease on *Eucalyptus urophylla* in Para, Brazil, is described and is shown to be a pathogen on *Eucalyptus grandis*, *Eucalyptus robusta*, *Eucalyptus tereticornis*, and *Eucalyptus torelliana*.

Key words: *Cylindrocladium ovatum*, *Eucalyptus urophylla*, leaf spot disease.


Mots clés : *Cylindrocladium ovatum*, *Eucalyptus urophylla*, tache foliaire.

[Intégré par la rédaction]

Introduction

*Cylindrocladium scoparium* and *Cylindrocladium spathulatum* have been reported as foliar pathogens of *Eucalyptus* spp. in Brazil. Following consistent isolations of a *Cylindrocladium* sp. from leaf spots on *Eucalyptus urophylla* S. T. Blake in Para, Brazil, a study was undertaken to identify the *Cylindrocladium* and to determine its pathogenicity on four of several species of *Eucalyptus* experimentally grown in Florida.

Materials and methods

The fungus was isolated from pieces of excised leaf tissue surface sterilized with 0.3% sodium hypochlorite for 3 min and plated on acidified potato dextrose agar (APDA, pH 4.3). APDA was prepared from the broth of 200 g of freshly peeled, diced, and boiled Irish potatoes (*Solanum tuberosum* L.) supplemented with 20 g dextrose, 1 g KH₂PO₄, and 18 g Difco Bacto agar and made up to 1 L with deionized water. After cooling to 50°C, 1.4 mL of 50% lactic acid was added per litre of autoclaved medium to obtain a pH of 4.3. The *Cylindrocladium* from *E. urophylla* (UPV-89) was subcultured on carnation (*Dianthus caryophyllus* L.) leaf – water agar (CL–WA) and peanut (*Arachis hypogaea* L.) stem – water agar (PS–WA) to enhance sporulation (Snyder and Hansen 1947). CL–WA was prepared using dried, sterile carnation leaf segments (5 × 5 mm) on 1.8% water agar as described by Fisher et al. (1982). PS–WA was prepared by pouring cooled (50°C), autoclaved water agar (WA) over dried, propylene oxide fumigated (Hansen and Snyder 1947) pieces of woody peanut stem (4–6 cm long) floating on WA or partially submerged in solidified agar. Single conidium isolates were obtained by the method of Hansen and Smith (1932).

¹Contribution No. 677 Bureau of Plant Pathology, Gainesville.

Five *Cylindrocladium* species with vesicle morphology resembling that of the *Cylindrocladium* under study from *E. urophylla* (UFV-89) were chosen: *C. ellipticum* Alfierei, C. P. Seymour & Soberes from *Mahonia bealei* Carr.; *C. scoparium* Morg. from *Eucalyptus cloezoeana* F. v. Muell.; *C. floridanum* Soberes & C. P. Seymour from *Prunus persica* (L.) Batsch; *C. croatalariae* (C. A. Loos) D. K. Bell & Soberes; and *C. spathulatum* EL-Gholl, Kimbrough, E. Barnard, Alfierei, & Schouttens from *Eucalyptus viminalis* Labill. According to Peerrally (1991), *C. ellipticum* has essentially the same morphological characters as *Cylindrocladium candelabrum* Viegas and is synonymous with *C. candelabrum*. Likewise, he considered *C. spathulatum* similar to *Cylindrocladium ilicilico* (Hawley) Boedijn & Reitsma and therefore reduced C. *spathulatum* to synonymy with *C. ilicilico*.

Vesicle morphology differences and microconidial production, as well as isoenzyme and protein electrophoresis were used as distinguishing characteristics.

For isoenzyme electrophoresis, cultures were grown on potato dextrose agar at 26 ± 1°C in the dark for 4 days. Mycelial agar plugs were taken from the margins of actively growing colonies and transferred to a semisynthetic liquid medium containing 10 g sucrose, 2 g l-asparagine, 2 g yeast extract, 1 g KH₂PO₄, 0.1 g MgSO₄·7H₂O, 0.44 mg ZnSO₄·7H₂O, 0.48 mg FeCl₃, and 0.31 mg MnSO₄·H₂O and made up to 1 L with distilled H₂O. Four agar plugs were placed in each of three 125-mL Erlenmeyer flasks containing 50 mL of the liquid medium and were incubated at 26 ± 1°C in the dark for 7 days. The mycelium was then harvested by suction onto Whatman No. 1 filter paper and rinsed under vacuum with distilled water to remove any residual liquid medium.

For soluble protein extraction, the mycelial cake was placed in a centrifuge tube containing cold acetone in the presence of liquid nitrogen in a Polytron Homogenizer (Brinkmann Instruments, Westbury, N.Y.) for 3–4 min until completely homogenized. Grinding the mycelium in cold acetone was necessary to maximize resolution of
sodium dodecylsulfate (SDS) proteins of the isolates under study. During gridding, the centrifuge tube containing the sample was kept in an ice bath. The extracts were maintained overnight at 10°C and were centrifuged at 40,000 x g for 30 min at 4°C. The supernatant was collected and stored at -20°C until used. For electrophoresis, protein extracts were mixed in equal amounts of sample buffer (25 mM glycerol, 0.06 M Tris–HCl solution, pH = 6.8, 2.5 mg bromophenol blue, and 25 mM distilled water), and 50 μL of each sample was applied on the gel. Discontinuous polyacrylamide gel electrophoresis (PAGE) for native and denatured proteins and isoenzymes was performed as described by Alfenas et al. (1984).

Tests were conducted to determine pathogenicity of mass isolate UFV-89 on 2-month-old seedlings of Eucalyptus grandis W. Hill ex Maiden, Eucalyptus robusta Sm., Eucalyptus tereticornis Sm., and Eucalyptus torelliana F. v. Muell. experimentally grown in Florida. The plants were grown from seeds in Metro-Mix Growing Medium 300 (Grace Horticultural Products, W. R. Grace & Co., Cambridge, Mass.) in 15-cm diameter pots. Isolate UFV-89 was cultured on four CL-WA Petri dishes (60 × 15 mm) and on four PS-WA Petri dishes (100 × 15 mm). Cultures were grown at room temperature (25 ± 2°C) under laboratory conditions for 3 days, then were moved to an incubator and grown at 26 ± 1°C under continuous fluorescent lighting (GE F20 T12-CW) at an intensity of approximately 3000 lx for 5 additional days. Conidial suspensions from the eight dishes were combined to prepare the inoculum. The inoculum contained approximately 134,000 conidia/mL. Plants were sprayed with this suspension using 30 mL per plant. There were three replications for each species of Eucalyptus used, with an equal number of plants sprayed only with deionized water as controls. After inoculation, plants were individually enclosed in plastic bags (serving as moist chambers) for 3 days at room temperature, then were uncovered and placed on a greenhouse bench for a period of 3 weeks for observation. The temperature of the greenhouse fluctuated from 16 to 34°C; however, plants were mostly exposed to temperatures ranging from 21 to 27°C, and the relative humidity varied from 42 to 100%.

Cultures grown on CL-WA and PS-WA were incubated at room temperature under laboratory conditions and were observed over a 5-week period. Water-mounted conidiophores and conidia were photographed as soon as they were produced. Water-mounted vesicles were photographed when cultures were 1 week old. Conidiophore branches, phialides, and vesicles were measured within 5 min of preparation to avoid swelling of structures. Conidia produced on the peanut stem were mounted in cotton blue lactophenol for measurements. Microscopic examinations and measurements were made at ×400 or ×1000.

Results and discussion

Identification

Conidiophores of the Cylindrocladium from E. urophylla (UFV-89) were borne laterally on a main central axis (stalk) (Fig. 1). The septate filament (extension of the main stalk) terminated in an oval to elliptoidal (Peerally 1991) to globose or subglobose (Hawksworth et al. 1985; Peerally 1991) apical swelling (vesicle) (Fig. 2), with the dominant vesicle shape oval to elliptoidal. Lateral filaments arose from some of the branches and terminated in oval to elliptoidal microvesicles. As many as three lateral filaments per conidiophore were observed. Vesicles were nonseptate, 1-septate, or 2-septate (Fig. 2). In one instance, septate vesicles were produced within 7 days in relatively high numbers (48%) on CL-WA under conditions of this study. Forty percent were 1-septate, 8% were 2-septate, and all others were nonseptate.

The usefulness of vesicle morphology as a taxonomic criterion has been discussed by many authors. Bell and Sober (1966) and Sober and Seynour (1967) originally proposed vesicle morphology as a useful feature in their comparison of C. crotalariae,

Figs. 1–5. Cylindrocladium ovatum, Fig. 1. Conidiophores with septate filaments (arrows). ×289. Scale bar = 35 μm. Fig. 2. Vesicles. ×578. Scale bar = 17.5 μm. Fig. 3. Microconidiophore bearing nonseptate and 1-septate microconidia and a vesicle. ×578. Scale bar = 17.5 μm. Fig. 4. Macroconidia and microconidia. ×289. Scale bar = 35 μm. Fig. 5. Macroconidia and microconidia. ×578. Scale bar = 17.5 μm.

C. floridanum, C. scoparium, and others. Hunter and Barnett (1978) and Rossman (1983) considered vesicle morphology too variable to be of any taxonomic value and stressed instead conidial characteristics as of primary taxonomic importance. Peerally (1991) and Uchida and Aragaki (1992), however, recognized that though vesicle morphology could be subject to some variation, it was not so variable as to disqualify it as a valuable character in distinguishing species of Cylindrocladium. This claim is substantiated by recognizable differences in soluable
Figs. 6–9. Disease symptoms caused by *Cylindrocladium ovatum*. Fig. 6. Spots on the upper surface of an artificially inoculated *Eucalyptus robusta* leaf. ×0.8. Fig. 7. Spots on the lower surface of the same leaf as in Fig. 6. Fig. 8. Stem girdling (arrow) on an artificially inoculated *Eucalyptus tereticornis* plant. ×2.2. Fig. 9. Petiole necrosis and necrotic stem lesions on an artificially inoculated *E. tereticornis* plant. ×2.2. Scale bars = 1 cm.
protein and isoenzyme electrophoresis profiles of *Cylindrocadium* species that have superficially similar but distinct vesicle, conidium, and conidiophore morphology. We conclude that all features relating to conidium and conidiophore morphology, including shape and size of the vesicle, are useful and practical taxonomic characters when used judiciously with fresh isolates of *Cylindrocadium* species. Cultures from long-term storage often produce abnormal conidia and vesicles and should not be utilized in systematic and physiological studies.

Primary branches were nonseptate or 1-septate. Of 82 primary branches measured, 70 (85%) were nonseptate and 12 (15%) were 1-septate. Secondary branches were nonseptate (41 were measured). Tertiary branches were nonseptate (nine were measured). Phialides were hyaline, nonseptate, rarely 1-septate, and mostly doliform (75 were measured). Although collarettes were noted on the macroconidial phialides, they were not formed on the macroconidial phialides. On naturally infected *E. urophylla* leaves, the fungus produced straight or slightly curved 1-, 2- and 3-septate macroconidia (mostly 1-septate) that measured approximately 69.5 × 4.5 μm. In culture (APDA, CL—WA, or PS—WA), however, macroconidia were straight (not curved) and 1-septate. A total of 185 macroconidia produced on CL—WA and PS—WA were measured as well as 145 microconidia. This fungus (UFV-89) produced macroconidia on CL—WA and PS—WA. In one case, microconidia were produced on PS—WA as early as 12 days from time of seedling. Microconidia were also observed on CL—WA, 19 days after seedling. Often, it took 3 weeks or longer for microconidia to form. Cultures that were obtained from single microconidia produced a mixture of macroconidia and microconidia (Figs. 4 and 5). Cultures that were obtained from single macroconidia also produced a mixture of both conidial types. Microconidia were nonseptate or 1-septate (Fig. 3). The microconidiophore also had a septate filament (Fig. 3). The isolates of the five species of *Cylindrocadium* used for comparison were not observed to produce microconidia. No other species of *Cylindrocadium* has yet been characterized as having oval vesicles and a microconidial state as observed in UFV-89.

The *Cylindrocadium* from *E. urophylla* (UFV-89) was deposited in the American Type Culture Collection, Rockville, MD 20852, U.S.A., as ATCC 76225.

Isoenzyme and protein electrophoresis were used as a further tool in distinguishing the *Cylindrocadium* under study (UFV-89) from species of *Cylindrocadium* that show similarities in vesicle morphology, i.e., ellipsoidal to oval (Alferi et al. 1970; Hawkesworth et al. 1983; Pe racially 1991; Snell and Dick 1971), spathulate (El-Gholl et al. 1986), or sphaero-pedunculate (Bell and Sobers 1966; Snell and Dick 1971; Sobers and Seymour 1967) apical vesicles.

The *Cylindrocadium* from *E. urophylla* (UFV-89) displayed different SDS and non-SDS proteins and α-isosterases from those of the five isolates used for comparison. The banding patterns of isolate UFV-89 were different (Figs. 10–12).

Because of fundamental differences in characteristics mentioned above, the *Cylindrocadium* under study is different from all other reported species of *Cylindrocadium*. We propose here the following new species.

*Cylindrocadium ovatum* El-Gholl, Alfenas, Crous, et Schubert sp. nov.

Filamentum septatum, hyalinum, terminans in vesicula ovoidaeus usque ad globosam aut subglobosam (12.4–25.0–47.5) × (6.0–9.7–14.9) μm (minim. – med. – max.). Vesiculae nonseptatae, 1-septatae, aut 2-septatae. Rami primi non septati, (16.8–27.8–39.6) × (3.5–4.6–6.9) μm aut 1-septati (41.6–59.7–71.3) × (4.3–4.8–5.5) μm; rami

---

Fig. 10. Comparative banding patterns of *Cylindrocadium* species. From left to right every two lanes represent banding patterns of *C. ellipticum* (lane 1), *C. scoparium* (lane 2), *C. floridanum* (lane 3), *C. crocatilace* (lane 4), *C. sphalium* (lane 5), and *C. ovatum* (lane 6). SDS proteins on 12–18% polyacrylamide gradient gel electrophoresis (PAGE).

Fig. 11. Comparative banding patterns of *Cylindrocadium* species. From left to right every two lanes represent banding patterns of *C. ellipticum* (lane 1), *C. scoparium* (lane 2), *C. floridanum* (lane 3), *C. crocatilace* (lane 4), *C. sphalium* (lane 5), and *C. ovatum* (lane 6). Non-SDS proteins on 19% PAGE.
postinoculation. Leaf spots on *E. grandis*, *E. robusta*, and
*E. tereticornis* were light to medium brown necrotic areas sur-
rounded by light green border (Fig. 6). Two weeks after
inoculation, the light green border surrounding the leaf spots
became grayish to whitish. No midvein necrosis, petiole necro-
sis, or stem lesions were observed on *E. torelliana* seedlings.
Although leaf spots were not initially surrounded by a border
on this host, some developed an inconspicuous light green border 2 weeks after inoculation. Leaf blottches and leaf drop
were observed on *E. grandis*, *E. robusta*, and *E. tereticornis*
but not on *E. torelliana*. *Cylindrocladium ovatum* was reiso-
lated from leaf spots, leaf blottches, necrotic petioles, necrotic
main veins, and necrotic stem lesions.

Artificially infected *E. robusta* leaves were deposited at the
University of Florida Herbarium, Department of Plant Pathol-
ogy, Gainesville, FL 32611, U.S.A., as FLAS F55639.

Acknowledgments

The authors thank Dr. E. L. Barnard, Florida Department of
Agriculture and Consumer Services, Division of Forestry,
for supplying the *Eucalyptus* seeds, Dr. Lewis A. Sussman,
Classics Department, University of Florida, for rendering the
Latin description, and Judy M. Mattes for typing the manuscript.

Alfenas, A. C. A., Jeng, R., and Hubbes, M. 1984. Isoenzyme and
protein patterns of isolates of *Cryptonectria cambia* differing in viru-

necrosis of *Mahonia beali* caused by *Cylindrocladium ellipticum*
species nova. Phytopathology, 60: 1212–1215.

Bell, D. K., and Sober, E. K. 1966. A peg, pod, and root necrosis of
peanuts caused by a species of *Calonectria*. Phytopathology, 56:
1361–1364.

El-Gholl, N. E., Kinbrugh, J. W., Barnard, E. L., Alfieri, S. A., Jr.,
and Schouttes, C. L. 1986. *Calonectria spathulata* sp. nov. Myco-
taxon, 26: 151–164.

1982. Carnation leaves as a substrate and for preserving cultures of

Hansen, H. N., and Smith, R. E. 1932. The mechanism of variation in

Hansen, H. N., and Snyder, W. C. 1947. Gaseous sterilization of
biological materials for use as culture media. Phytopathology, 37:
369–371.

Ainsworth and Bisby’s dictionary of the fungi, including the ichens.
7th ed. Commonwealth Mycological Institute, Kew, Surrey, U.K.
Hunt, B. B., and Barnett, H. L. 1978. Growth and sporulation of
species and isolates of *Cylindrocladium* in culture. Mycologia, 70:
614–625.

Peally, A. 1991. The classification and phytopathology of *Cylindro-

Rossman, A. Y. 1983. The phragmosporous species of *Nectria* and
related genera (*Calonectria*, *Opithecia*, *Paranectria*, *Scoleone-
No. 150.

Snyder, W. C., and Hansen, H. N. 1947. Advantages of natural
media and environments in the culture of fungi. Phytopathology, 37:
420–421.

sp. associated with decline of peach trees in Florida. Phyto-
pathology, 57: 389–393.

Uchida, J. Y., and Aragaki, M. 1992. Further characterization of
*Cylindrocladium spathiphyli* from *Spathiphylum* in Hawaii and