Overlooked competing asexual and sexually typified generic names of Ascomycota with recommendations for their use or protection

Amy Y. Rossman1, W. Cavan Allen2, Uwe Braun1, Lisa A. Castlesbury2, Priscila Chaverri13, Pedro W. Crous6,7,8, David L. Hawksworth910,11, Kevin D. Hyde12, Peter Johnston13, Lorenzo Lombard6, Megan Romberg14, Rob A. Samson6, Keith A. Seifert15, Jeffrey K. Stone1, Dhanushka Udayanga1, and James F. White16

1Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA; corresponding author email: amydianer@yahoo.com
2Systemic Mycology and Microbiology Laboratory, USDA-ARS, Beltsville, MD 20705, USA
3Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Herbarium, Neuwert 21, 06099 Halle (Saale), Germany
4Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
5Escuela de Biologia, Universidad de Costa Rica, San Pedro San José, Costa Rica
6CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
7Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
8Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
9Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, Madrid 28040, Spain
10Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
11Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey TW9 3DS, UK
12Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
13Landcare Research, Private Bag 92170, Auckland 1142, New Zealand
14USDA-APHIS National Identification Services, Beltsville, MD 20705, USA
15Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
16Department of Plant Biology & Pathology, Rutgers University, 59 Dudley Rd., New Brunswick, NJ 08901, USA

Abstract: With the change to one scientific name for fungal species, numerous papers have been published with recommendations for use or protection of competing generic names in major groups of ascomycetes. Although genera in each group of fungi were carefully considered, some competing generic names were overlooked. This paper makes recommendations for additional competing genera not considered in previous papers. Chairs of relevant Working Groups of the ICTF were consulted in the development of these recommendations. A number of generic names need protection, specifically Amarenographium over Amarenomycetes, Aminiculicola over Anguilliospora, Balansia over Epelhis, Claviceps over Sphacelar, Drepanopeziza over Gloeosporidella and Gloeosporium, Golovinomyces over Eudoidia, Holwaya over Crinium, Hypocrella over Aschersonia, Labridella over Griffipherioma, Metacapnodium over Antennularia, and Neoneactia over Cylindrocarpon and Heliscus. The following new combinations are made: Aminiculicola longissima, Atlichia maunaulua, Diaporthe columnaris, D. liquidambaris, D. longiparaphysata, D. palmicola, D. tersa, Elsinoë bucae, E. caricae, E. choisyae, E. paeoniae, E. psidii, E. zorniae, Eupelte shoemakeri, Godronia myrtilli, G. raduloides, Sarcinella mirabilis, S. pulchra, Schizothryum jamaicense, and Trichothumbnail nigres. Finally, one new species name, Diaporthe azadiracthe, is introduced to validate an earlier name, and the conservation of Discula with a new type, D. destructiva, is recommended.

Key words: Diaporthales Dothideomycetes Dothideomycetes dual nomenclature Eurotilaces Hypocreales Hypocreales nomenclature pleomorphic fungi protected lists of names taxonomy

Article info: Submitted: 19 October 2016; Accepted: 15 November 2016; Published: 29 November 2016.

INTRODUCTION

With the change to one scientific name for fungi (McNeill et al. 2012), a number of papers have been published with recommendations for use or protection of competing generic names of ascomycetes. These papers address genera in the major groups of Sordariomycetes such as Diaporthales (Rossman et al. 2015a), Hypocreales

© 2016 International Mycological Association

You are free to share - to copy, distribute and transmit the work, under the following conditions:

Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

Non-commercial: You may not use this work for commercial purposes.

No derivative works: You may not alter, transform, or build upon this work.

For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.
However, three additional sets of competing generic names (Samson et al. 2016) with one scientific name recommended for each pleomorphic genus and species. The type of the monotypic genus Basipetospora, by Cole & Kendrick (1968), and later regarded as B. vesicarum (Stalpers 1984), thus these generic names are synonyms. These authors also considered the monotypic genus Backusia based on B. terricola to be a synonym of Monascus. Stchigel et al. (2004) provided an account of Monascus recognizing Basipetospora for the asexual morph and placed it in Aspergillaceae. Monascus includes a number of species that are important in food science for which the name Monascus is used exclusively. Monascus includes 30 species, with four names currently accepted in Basipetospora of which the two species described by Matsushima (1975) belong to different orders (Seifert & Gams, unpubl.). Given its priority, the greater number of species, a recent monograph, and its economic importance, the use of Monascus is recommended.

Use Paecilomyces Bainier 1907 (A) rather than Byssochlamys Westling 1909 (S)
The type species of Paecilomyces, P. variotii, and the type species of Byssochlamys, B. nivea, were shown to be congeneric through molecular sequence analyses (Luangsa-ard et al. 2004, Samson et al. 2009), although the relationship between these genera had been known for some time (Stolk & Samson 1971). These fungi are thermotolerant and thus are important in the food and beverage industry as spoilage organisms (Samson et al. 2000). The concept of Paecilomyces had been confused due to the reduced morphology of the asexual reproductive structures; however, many species that are not monophyletic with the type species have now been placed in other genera. These include fungi used in biological control, Purpureocillium lilicinum (syn. Paecilomyces lilicinum) and insect pathogens such as Isaria farinosa (syn. Paecilomyces farinosus) and I. fumosoroseus (syn. Paecilomyces fumosoroseum; Luangsa-ard et al. 2004, 2005). The use of Paecilomyces in the strict sense of those involved in food spoilage is widespread; in a recent Food Mycology workshop held in Freising, Germany, the group discussed these competing generic names and decided to recommend use of the generic name that has priority, namely Paecilomyces (Samson pers. comm.). Although several valid and accepted species of Paecilomyces sensu Stolk & Samson (1971) remain to be renamed, we support the community opinion to maintain the use of Paecilomyces over Byssochlamys.

Use Xeromyces L.R. Fraser 1954 (S) rather than Fraseriella Cif. & A.M. Corte 1957 (A)
The type of the monotypic genus Xeromyces, X. bisporus, is an extreme xerophilic fungus that can grow in sugary substances and is thus important in food mycology (Dallyn & Everton 1969). The asexual morph of X. bisporus was described as Fraseriella bispora, type of the monotypic genus Fraseriella, thus these generic names are synonyms and compete for use. Although an early study suggested that Xeromyces bisporus belonged in Monascus (Stchigel et al. 2004), a more extensive account has shown that Xeromyces is a distinct genus within Eurotiales (Pettersson et al. 2011). Xeromyces has priority and is used more extensively than Fraseriella, thus we recommend the use of Xeromyces.
SORDARIOMYCETES

AMPHISPHAERIALES

Protect Labridella Brenckle 1929 (S) over Griphosphaerioma Höhn. 1918 (A)
The sexual morph of the type species of Labridella, L. comu-cervae, was determined to be Griphosphaerioma kansensis based on Cryptospora kansensis, an earlier name for G. symphoricarpri, by Shoemaker (1963). At present Griphosphaerioma includes one other species, G. zelkovicola, which has an asexual morph referred to as Sarcostroma zelkovicola (Ono & Kobayashi 2003). The generic name Sarcostroma is now regarded as Seimatosporium, thus it seems unlikely that G. zelkovicola is congeneric with the type of Griphosphaerioma. No molecular data exist for any of these species. The name Labridella comu-cervae has been used in two major references (Nag Raj 1993, Sutton 1980) and Labridella is cited more frequently than Griphosphaerioma, thus we recommend Labridella for protection and use.

DIAPORTHALES

Five new combinations and one name validated in Diaporthe
The name Diaporthe has priority over Phomopsis and was recommended for use based on discussions within the Diaporthales Working Group (Rossman et al. 2015a). New combinations in Diaporthe of commonly encountered species were made in that paper. Some names of Phomopsis have been synonymized under older Diaporthe species names redefined using molecular data (Rossman et al. 2014, Udayanga et al. 2014a,b). A number of economically important species of Phomopsis have been sequenced and appear to be unique species within Diaporthe. Based on these sequences and the use of the generic name Diaporthe, we propose a new species to validate a name previously described in Phomopsis and the following five new combinations.

Diaporthe azadirachtae Udayanga & Castl., sp. nov.
MycoBank MB819047
Type: India: Karnataka, on dry twigs of Azadirachta indica; 1996, M.K Sateesh (HClO 42119-holotype; University of Mysore, Manasagangotri, MUBH 983-isotype).
Diaporthe azadirachtae (as “Phomopsis azadirachtae”) causes a serious twig blight disease on Azadirachta indica (Meliaceae), neem, and has been reported in phytopathological literature (Sateesh et al. 1997, Falthima et al. 2004, Girish & Shankara Bhat 2008, Prasad et al. 2009, 2010). This new name replaces “Phomopsis azadirachtae”, which was described with two specimens designated as type and so was not validly published (Art. 40.3). In addition this taxon is now placed in the correct genus, Diaporthe.

Diaporthe columnaris (Farr & Castl.) Udayanga & Castl., comb. nov.
MycoBank MB819020.

Diaporthe liquidambaris (C.Q. Chang et al.) Udayanga & Castl., comb. nov.
MycoBank MB819021.

Diaporthe longiparaphysata (Uecker & K.C. Kuo) Udayanga & Castl., comb. nov.
MycoBank MB819022

Diaporthe palmicola (G. Winter) Udayanga & Castl., comb. nov.
MycoBank MB819023

Diaporthe tersa (Sacc.) Udayanga & Castl., comb. nov.
MycoBank MB819024

Use Discula Sacc. 1884 based on D. destructiva Redlin 1991
In reviewing the generic names competing for use in Diaporthales, Rossman et al. (2015a) suggested that the generic name Discula based on D. platani, which is now regarded as D. nervisequa but erroneously stated as D. quercina, should be considered a synonym of Apiognomonia. Discula nervisequa is, however, now regarded as Apiognomonia veneta while the sexual morph of D. quercina could not be determined (Sogonov et al. 2007). Most species of Discula are now recognized in Apiognomonia. One widely used species of Discula is not congeneric with the type species and is not synonymous with Apiognomonia, namely Discula destructiva, cause of dogwood anthracnose (Redlin 1991). This species has been shown to fall outside of Apiognomonia but still within Gnomoniaceae, and is not allied with any known genus (Castlebury et al. 2002, Mejia et al. 2012). In order to continue the use of Discula destructiva for the cause of dogwood anthracnose and to eliminate the need for a new generic name and name change, a conservation proposal has been published to conserve Discula with a new type species, D. destructiva (Allen et al. 2016).
Table 1. Recommended generic names that compete for use not considered in previous papers. The recommended accepted generic name is in bold; see text for rationale for these decisions. For each generic name this list provides the authors, its date and place of publication, the type species of the genus, its basionym, their dates of publication, and the currently accepted name, if different. The action required is indicated in the last column such as protection of name that is recommended for use but does not have priority. NCF = Nomenclature Committee for Fungi.

<table>
<thead>
<tr>
<th>Recommended generic name</th>
<th>Synonymous alternate morph generic name</th>
<th>Action required</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROTIALES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPHISPHAERIALES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYPOCREALES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xenostilbum Petr. in Sydowia 13: 105. 1959. Type: X. sydowii Petr. 1959, now regarded as Calostilbe striispora (Ellis & Everh.) Seaver 1928.</td>
<td></td>
</tr>
<tr>
<td>Recommended generic name</td>
<td>Synonymous alternate morph generic name</td>
<td>Action required</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
Table 1. (Continued).

<table>
<thead>
<tr>
<th>Recommended generic name</th>
<th>Synonymous alternate morph generic name</th>
<th>Action required</th>
</tr>
</thead>
</table>
Table 1. (Continued).

<table>
<thead>
<tr>
<th>Recommended generic name</th>
<th>Synonymous alternate morph generic name</th>
<th>Action required</th>
</tr>
</thead>
</table>
Table 1. (Continued).

<table>
<thead>
<tr>
<th>Recommended generic name</th>
<th>Synonymous alternate morph generic name</th>
<th>Action required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Torulopsiella Bender in Mycologia 24: 411. 1932. Type: T. fumaginea (Speg.) Bender 1932, basionym: Torula fumaginea Speg. 1911.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

None.
Table 1. (Continued).

<table>
<thead>
<tr>
<th>Recommended generic name</th>
<th>Synonymous alternate morph generic name</th>
<th>Action required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarcinella Sacc. in Michelia 2: 31. 1880.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type: S. heterospora Sacc. 1877, now regarded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type: S. mirabilis Höhn. 1909, now regarded as Sarcinella mirabilis (Hohn.) Seifert 2016.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type: Questieriella pulchra S. Hughes 1983, now regarded as Sarcinella pulchra (Sacc.) Seifert 2016.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type: P. colensoi Bat. et al. 1958, now regarded as Trichothallus niger (Jennings) Seifert 2016.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type: T. asiatica Bat. et al. 1958, now regarded as Trichothallus niger (Jennings) Seifert 2016.</td>
<td></td>
</tr>
<tr>
<td>Yoshinagaia Henn. in Hedwigia 43: 143. 1904.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type: J. quercus Höhn. 1909, now regarded as Yoshinagaia quercus Henn. 1904.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type: Y. quercus Hara 1912, now regarded as Yoshinagaia quercus Henn. 1904.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type: M. quercus (Henn.) Hara. 1927, now regarded as Yoshinagaia quercus Henn. 1904.</td>
<td></td>
</tr>
</tbody>
</table>

HYPOCREALES

When the paper on recommendations for competing generic names in the non-clavicipitaceous *Hypocreales* was published based on deliberations of the *Hypocreales* Working Group (Rossman et al. 2013), only those generic names needing protection due to lack of priority or having asexual types were included. Since then the philosophy has changed with the Working Group reports including all competing generic names in their papers, for completeness, thus additional competing generic names in the non-clavicipitaceous *Hypocreales* are presented here. The generic names recommended for use in *Nectriaeaceae* are in agreement with the comprehensive overview of this family presented by Lombard et al. (2015). Among the clavicipitaceous *Hypocreales*, Quandt et al. (2014) published a paper on *Ophiocordycipitaceae* and a second major paper on *Cordycipitaceae* is planned to be published soon (R Kepler, pers. comm.). Several important generic pairs in *Clavicipitaceae* are considered here.

Protect Balansia Speg. 1885 (S) over Ephelis Fr. 1849 (A)

The genus *Balansia* is typified by *B. claviceps* and was monographed by Diehl (1950) with 13 species. A phylogeny of *Balansia* within *Clavicipitaceae* was provided by Reddy et al. (1998), who determined that six species of *Balansia* including the type form a monophyletic group. *Balansia claviceps* causes a disease referred to as false smut or flower blight that infects living inflorescences in tropical regions (Reddy et al. 1998). This and other species of *Balansia* produce alkaloids that provide protection to grasses that harbour this fungus as an endophyte (White 1997). The generic name *Ephelis*, based on *E. mexicana*, has been used for the asexual morphs of species of *Balansia* but includes many fewer names. *Ephelis mexicana* is considered the asexual morph of *B. claviceps* as confirmed by Diehl (1950) and later authors (Bacon & White 1994, White 1997), thus these generic names are synonyms. *Balansia* is here proposed for protection over *Ephelis* and only *Balansia* is included in Kirk et al. (2013).
Use Calonectria De Not. 1867 (S) rather than Cylindrocladium Morgan 1892 (A) and Candollospora Rea & Hawley 1912 (A)

The relationship and restricted definition of Calonectria based on C. pyrochroa and its asexual morph in Cylindrocladium typified by C. scoparium was first recognized by Rossman (1979) and confirmed by Lombard et al. (2010, 2015). The type of Candollospora, C. ilicicola, has most recently been recognized as a synonym of Calonectria pyrochroa (Lombard et al. 2015). Both Calonectria and Cylindrocladium are used about equally, thus we recommend following the principle of priority and using the name Calonectria. A number of important plant pathogenic fungi are placed in this genus including Calonectria pseudonaviculata, cause of boxwood blight, and C. ilicicola, cause of black rot of peanut.

Use Calostilbe Sacc. & P. Syd. 1902 (S) rather than Calostilbella Höhn. 1919 (A) or Xenostilbum Petr. 1959 (A)

The relationships of the type species of Calostilbe, C. strisspora, type of the asexual morph Calostilbella calostilbe, of the monotypic Calostilbella, was first recognized by Samuels (1973, as “Nectria strisspora”) and later confirmed as a genus distinct from Nectria in Rossman et al. (1999) and Lombard et al. (2015). The synonymy of Xenostilbum sydowii, type of the monotypic Xenostilbum, with Calostilbella calostilbe was first recognized by von Arx (1981) and accepted by later authors. Given that the generic name Calostilbe has priority and is most widely used, Calostilbe is recommended for use.

Use Chaetopsina Rambelli 1956 (A) rather than Chaetopsinectria J. Luo & W.Y. Zhuang 2010 (S)

Four species of Nectria s. lat. having Chaetopsina asexual morphs were described by Samuels (1985). These species were later placed in a separate genus Chaetopsinectria typified by N. chaetopsinae by Luo & Zhuang (2010). The asexual morph of N. chaetopsinae is Chaetopsina fulva, type of the generic name Chaetopsina (Samuels 1985), thus these generic names are synonyms. One of the four nectria-like species described by Samuels (1985) and placed in Chaetopsinectria has since been placed in Mariannaea, M. catenulatae, thus only three names remain in Chaetopsinectria all of which have names in Chaetopsina. Chaetopsina includes 18 names. Given its priority, widespread use, and greater number of names, the generic name Chaetopsina is recommended for use.

Protect Claviceps Tul. 1853 (S) over Sphacelia Lév. 1827 (A) and rather than Ustilagopsis Spec. 1880 (A)

The genus Claviceps, typified by C. purpurea, is well known as the cause of ergot and human diseases associated with infected cereals (Bove 1970) while the asexual morph producing a honey dew has been placed in Sphacelia. The type of Sphacelia, S. segetum, has long been regarded as the asexual morph of C. purpurea (Tulasne 1853). This species was recently determined to consist of three species with S. segetum recognized as a synonym of C. purpurea sensu stricto (Pažoutová et al. 2015), thus there is no question that Claviceps and Sphacelia are synonyms. Another younger generic name, Ustilagopsis based on U. deliquesccens, competes with Claviceps. This type is a synonym of Claviceps paspali as suggested by Wolf & Wolf (1947) and Langdon (1954), thus Ustilagopsis is a further synonym of Claviceps. In addition to ergot caused by C. purpurea, there are a number of important diseases caused by Clavicipes such as sorghum ergot, C. africana (Toole et al. 2006), and horse’s tooth of corn, C. giganteum (Fuentes et al. 1964). These fungi produce a number of industrially important alkaloids (Hulvová et al. 2013). Although Sphacelia includes 33 species names, the generic name Claviceps includes 88 names, many of which have been thoroughly studied (White et al. 2003), is much more widely used, and should be protected for use.

Use Corallomycetella Henn. 1904 (S) rather than Rhizostilbella Wolk 1914 (A)

The type species of Corallomycetella, C. heinsenii, was confirmed as a synonym of C. repens by Rossman et al. (1999), a common tropical fungus that is known to cause diseases such as violet root rot of cacao, Theobroma cacao, and other root rot diseases on woody plants (Booth & Holdiday 1973, as “Sphaerostilbe repens”). Seifert (1985) recognized the synonymy of the type species of Rhizostilbella, R. rubra, with Stilbum hibisci, then considered the asexual morph of Nectria mauriticiola, now C. repens (Rossman et al. 1999). Corallomycetella was recently monographed by Herrera et al. (2013) in which Corallomycetella was accepted over Rhizostilbella as was also the case in Lombard et al. (2015). Given its priority and widespread use, we recommend the use of Corallomycetella.

Use Epichloë (Fr.) Tul. & C. Tul. 1865 (S) rather than Neotyphodium Glenn et al. 1996 (A)

The relationship of Epichloë and Neotyphodium has already been addressed with all names resolved by Leuchtmann et al. (2014). They clearly demonstrated that these generic names are synonyms and agreed with priority thus recommending the use of Epichloë.

Protect Hypocrella Sacc. 1878 (S) over Aschersonia Mont. 1848 (A)

The genus Hypocrella based on H. discoidea has been defined to include the type and four additional species while most species previously regarded as Hypocrella are now placed in the genera Moelleriella and Samuelia (Chaverri et al. 2008). The type species of Aschersonia, A. tahitensis, was said to be closely related to the type of Hypocrella (Chaverri et al. 2008), although H. discoidea was considered to have an asexual morph referred to as A. samoensis by Hywel-Jones et al. (1993). Nevertheless the generic names Hypocrella and Aschersonia are synonyms. Both names have been used extensively in the literature and include many names but with the narrow concept of Hypocrella, relatively few species remain in that genus but even fewer remain in Aschersonia. Given its widespread use and the greater number of names, we recommend the generic name Hypocrella for protection and use.
Competing generic names of Ascomycota

As part of discussions by the Hypocreales Working Group, it was decided to protect Neocentria over Cylindrocarpon (Rossman et al. 2013). Since then Lombard et al. (2014) demonstrated that the type species of Heliscus, *H. lugdunensis*, belongs in *Neocentria*. This species is an aquatic hyphomycete with unusual helicoid conidia. *Heliscus* includes only a few species while over 50 species have been described in *Neocentria* including a number of important plant pathogens such as *N. coccinea*, cause of beech bark disease in Europe, and *N. galligena*, cause of canker disease of apple, birch and other hardwood trees in temperate regions. Given that *Neocentria* is already proposed for protection over *Cylindrocarpon* and that *Heliscus* is a relatively unknown genus with few species, it is recommended that *Neocentria* also be protected over *Heliscus*.

Use Ophionectria Sacc. 1878 (S) rather than Antipodium Piroz. 1974 (A)

The type of the generic name *Ophionectria*, *O. trichospora*, is a relatively common and distinctive species occurring on rotting wood in tropical regions (Rossman 1977). The asexual morph of *O. trichospora* was described as the equally distinctive *Antipodium* *spectabile* in the monotypic genus *Antipodium* (Pirozynski 1974), thus these generic names are synonyms. Given its priority and widespread use, the name *Ophionectria* is recommended for use.

Use Penicillifer Emden 1968 (A) rather than Viridispora Samuels & Rossman 1999 (S)

Two species of *Nectria* s. lat. were determined to have asexual morphs belonging to the genus *Penicillifer* by Samuels (1989). Rossman et al. (1999) recognized these species with two others as the distinct genus *Viridispora*, typified by *V. penicilliferi*. Lombard et al. (2015) demonstrated that the type species of *Viridispora* and the type species of *Penicillifer*, *P. pulcher*, were congeneric thus these generic names are synonyms. About eight names are included in *Penicillifer* with only four names in *Viridispora*, all of which also have names in *Penicillifer*. Given its priority, widespread use and greater number of names, we recommend the use of *Penicillifer*.

Use Sarcopodium Ehrenb. 1818 (A) rather than Actinostilbe Petch 1925 (A) and Lanatonectria Samuels & Rossman 1999 (S)

A clade with the type species of *Sarcopodium*, *S. circinatum*, was shown to include the type species of *Lanatonectria*, *L. flocculenta* (as *S. maculipinellae*), and the type species of *Actinostilbe*, *A. vanillae* (as *S. vanillae*) by Lombard et al. (2015), thus these three generic names are synonyms. *Actinostilbe* had previously been shown to be a synonym of *Sarcopodium* by Sutton (1981). About thirty names are included in *Sarcopodium*, a generic name that is widely used. Only five names have been placed in *Lanatonectria*. Given its priority, widespread use and greater number of names, we recommend the use of *Sarcopodium*.

Use Ustilaginoidea Bref. 1895 (A) rather than Villosiclava E. Tanaka & C. Tanaka 2009 (S)

The type species of *Ustilaginoidea*, *U. oryzae*, now recognized as *U. virens*, causes a disease called false smut of rice that occurs throughout the rice-growing regions of the world (Mulder & Holliday 1971). A monotypic generic name for the sexual morph of this fungus, *Villosiclava* based on *V. virens*, was published by Tanaka et al. (2009) in which the relationship between these two names as the same species was confirmed. Thus there is no question that these generic names are synonyms. *Ustilaginoidea* has been used widely for this disease while the sexual morph name is relatively recent and has not been used to any extent. Given its widespread use and priority, *Ustilaginoidea* is recommended for use.

Use Volutella Fr. 1832 (A) nom. cons. rather than Volutellonectria J. Luo & W.Y. Zhuang 2012 (S)

Volutella based on *V. ciliata* is a well known genus of ubiquitous, sporodochial, saprobic fungi. This generic name has been conserved over the plant name *Volutella Forsk*. 1775 (*Laureaceae*) (Hawksworth & Tulloch 1972). The link with the nectria-like sexual morph *Nectria consors* was determined by Samuels (1977). This species, as *Volutellonectria consors*, served as the type of the generic name *Volutellonectria* with three species. Gräfenhan et al. (2011) and Lombard et al. (2015) demonstrated that *Volutella ciliata* and *V. consors* are congeneric and should be regarded as a distinct genus in *Nectriaceae*. Given the numerous species, its priority, and widespread use, it is recommended that *Volutella* be used for this genus.

The type species of *Xenocylinodrocladium*, *X. serpens*, was described as the asexual morph of *Nectria serpens* (Decock et al. 1997), a name that was later transferred to the monotypic *Xenocalonectria* (Schoch et al. 2000), thus these generic names are synonyms. Given the three names in that genus and its priority, we recommend the use of *Xenocylinodrocladium*.

SORDARIOMYCETES INCERTAE SEDIS

Use Batistia Cif. 1958 (S) rather than Acrostoma Seifert 1987 (A)

The monotypic genus *Batistia* is based on *B. annulipes* with which an asexual morph, *Acrostoma annellosynnema*, was linked using cultural methods by Samuels & Rodriguez (1989). No sequence data have been published for this species and the only known cultures are lost (S Huhndorf, in litt. to K A Seifert). The generic name *Acrostoma*, typified by *A. annulipes*, was described by Seifert (1987) with two species added since then (Verma et al. 2008) that are probably misclassified (Seifert et al. 2011). *Batistia annulipes* is a relatively common and distinctive tropical fungus, thus this genus is more widely known than *Acrostoma*. Based on its greater use in the literature and priority, we recommend the use of *Batistia*.
LEOTIOMYCETES

In reviewing generic names in Leotiomyces, Johnston et al. (2014) listed competing generic names and proposed a single generic name for protection or use. However, the following three sets of generic names were not included in that paper. In addition two new combinations are made in genera reviewed previously and the protection of a generic name of a powdery mildew (Leotiomyces, Erysiphales) omitted in Braun (2013) is proposed.

Protect Drepanopeziza (Kleb.) Jaap 1914 (S) over Gloeosporiodesm. & Mont. 1848 (A) and rather than Gloeosporidiella Petr. 1921 (A) Drepanopeziza ribis, type species of Drepanopeziza, is commonly encountered causing a leaf spot disease of current or gooseberry anthracnose (Booth & Walker 1979). The name Drepanopeziza was recognized at the generic rank for the first time by Jaap (1914) based on Pseudopeziza subgenus Drepanopeziza described by Klebahn (1906) who based this subgenus on P. ribis, the only species mentioned in this description; Index Fungorum erroneously gives P. campestris as the type of Drepanopeziza. Although Jaap (1914) recognized D. campestris based on P. campestris, he attributed the generic name to Klebahn’s name Pseudopeziza subgenus Drepanopeziza, which was described with only one species, P. ribis (Klebahn 1906). This name automatically becomes the type. Drepanopeziza was not included in Johnston et al. (2014) because this name was considered to represent a good genus with no competing synonyms. Since then, it has been discovered that the type species of Gloeosporium, G. castagnei, is the asexual morph of D. populi-albae and the type species of Gloeosporidiella, G. ribis, is the asexual morph of D. ribis. Similarly G. variabile is the asexual morph of D. variabilis (Rimpau 1961). Thus Gloeosporium and Gloeosporidiella are congeneric with Drepanopeziza. Von Arx (1957) provided an account of the over 800 names described in a very broadly circumscribed Gloeosporium, which are used for asexual morphs of species in genera throughout the ascomycetes. Gloeosporidiella is a smaller genus with only 18 species some of which were included in von Arx (1957) and Sutton (1980). Based on its widespread use, the ill-defined, historical concept of Gloeosporium, and the relative obscurity of Gloeosporidiella, Drepanopeziza is recommended for protection and use over these two competing generic names.

Protect Golovinomyces (U. Braun) Heluta 1988 (S) over Euordion Y.L. Paul & J.N. Kapoor 1985 (A)

Braun (2012) discussed the relevance of asexual and sexual morph-typified names in powdery mildews (Erysiphales) and proposed to give general preference to names based on sexual morphs. This approach to solve corresponding nomenclatural problems in powdery mildews was implemented by Braun (2013) who proposed to conserve the sexual morph-typified name Blumeria against the asexual morph-typified name Oidium and twenty-two sexual morph-typified species names against competing asexual morph-typified names. One case at the generic level was omitted. Braun (1978) introduced Erysiphe sect. Golovinomyces for powdery mildews characterized by having ascomata with mycelioid appendages, 2-spored asci, and a characteristic asexual morph: i.e. appressorium indistinct to nipple-shaped, conidia catenates, without fibroin bodies. Heluta (1988) raised this section to generic rank by introducing the new combination Golovinomyces. The asexual morph-typified name Euodium was proposed by Paul & Kapoor (1985) with Oidium erysiphoides as type species. This generic name was previously used in the broad sense for all kinds of asexual powdery mildews with conidia formed in chains. Oidium erysiphoides is also a dubious name, i.e. used in a very wide sense for all kinds of asexual powdery mildews. Type material of O. erysiphoides is not preserved. In order to clarify the application of Oidium erysiphoides and thereby Euodium, Braun & Cook (2012) neotypified this species name with asexual morph material of Golovinomyces biocellatus making Euodium a heterotypic synonym of Golovinomyces. The name Euodium dates from 1985 while Golovinomyces was introduced at the generic rank in 1988. Following the proposal to give general preference to sexual morph-typified names in powdery mildews, its widespread, and phylogenetically proven distinction, Golovinomyces is proposed for protection over Euodium.

Protect Holwaya Sacc. 1889 over the additional synonym Crinium Fr. 1819 (A)

Although the generic name Holwaya has been proposed for protection over Crinula in Johnston et al. (2014), since then it has been determined that Holwaya must also be protected against Crinium based on the type, Acrospermum caliciforme. In the protologue for Crinium Fries (1819) mentioned only this species with reference to its place of publication. Later Fries (1821) placed A. caliciforme in the genus Crinula. The name Crinium has not been used since then, thus Holwaya is proposed for protection over Crinium.

Use Pseudeurotium J.F.H. Beyma 1937 (S) rather than Teberdinia Sogonov et al. 2005 (A)

The genus Pseudeurotium based on P. zonatum includes 19 names and belongs in Pseudeuroticiaceae. Sogonov et al. (2005) described the monotypic genus Teberdinia, based on T. hygrophil, including three unnamed asexual morphs of species of Pseudeurotium. In determining the phylogenetic position of the fungus causing white-nose syndrome of bats now known as Pseudogymnoascus destructans, Minnis & Lindner (2013) demonstrated that Pseudeurotium and Teberdinia were synonyms and placed T. hygrophi in Pseudeurotium. While Teberdinia is monotypic and relatively obscure, Pseudeurotium has priority, includes a number species, and is well known, thus we recommend the use of Pseudeurotium.

NEW COMBINATIONS IN LEOTIOMYCETES

In reviewing generic names in Leotiomyces, Johnston et al. (2014) recommended the use of Godronia rather than Topospora. Since then it has been determined that two names in Topospora should be placed in Godronia so these new combinations are proposed here:
Godronia myrtilli (Feltgen) J.K. Stone, comb. nov.
MycoBank MB819026

In studying Sirococcus, Konrad et al. (2007) used Godronia (syn. Topospora) as an outgroup and showed that two isolates of T. myrtilli grouped with G. cassandrae, thus confirming that T. myrtilli belongs in Godronia.

Godronia raduloides (Sacc. & Scalia) J.K. Stone, comb. nov.
MycoBank MB819027

In placing this species in Topospora, Verkley (2002) noted that on the type material there was a note "...accompanied by apothecia of a species of Godronia", and he suggested that Godronia was the sexual morph of T. raduloides.

DOTHIDEOMYCETES

Although a list has been published of recommendations for competing genera in the Dothideomycetes (Rossman et al. 2015b) based on Wijayawardene et al. (2014), a number of additional competing generic names have been noted since then and are listed here with recommendations for the generic name to use.

Use Abrothallus De Not 1845 (S) rather than Vouauxiomycyse Dyko & D. Hawksw. 1979 (A)
The generic name Abrothallus, typified by A. bertianus, represents a relatively well-known group of lichenicolous fungi including about 60 names, while Vouauxiomycyse based on V. truncatus (Hawksworth & Dyko 1979), the asexual morph of A. microsporum. The connection between these generic names was confirmed using electrophoretic methods by Pérez-Ortega et al. (2011), who cited numerous papers in which this relationship was noted. In addition two recent accounts of Abrothallus have been published in which the phylogeny and species of this genus are elaborated (Pérez-Ortega et al. 2014, Suija et al. 2015). Given the greater number of species, widespread use, and priority, use of Abrothallus is recommended.

Use Acroconidiellina M.B. Ellis 1971 (A) rather than Zeuctomorpha Sivan. et al. 1984 (S)
The monotypic genus Zeuctomorpha, based on Z. arecae, was described as the sexual morph of Acroconidiellina arecae. No molecular work exists to confirm that A. arecae is congeneric with the type species of Acroconidiellina, A. loudetiae, but this seems likely. Assuming that these type species belong in the same genus, it follows that Acroconidiellina and Zeuctomorpha are congeneric. Acroconidiellina includes four species, is more commonly used, has priority, and was accepted by Hernández-Restrepo et al. (2016), thus we recommend the use of Acroconidiellina.

Protect Amarenographium O.E. Erikss. 1982 (A) over Amarenomyces O.E. Erikss. 1981 (S)
The type species of Amarenomyces, A. ammophila, was determined to be the sexual morph of Amarenographium metableticum, type of Amarenographium (Eriksson 1982, Phookamsak et al. 2014), thus these generic names are synonyms. Although Amarenomyces ammophila is widely reported as an aquatic fungus, it remains the only name placed in this genus while four species have been included in Amarenographium (Nag Raj 1989). Both generic names have been cited about equally. Rather than make three name changes, we recommend protecting the name Amarenographium for which no name changes are required.

Protect Amniculicola Y. Zhang ter & K.D. Hyde 2008 (S) over Anguillospora Ingold 1942 (A)
Both Zhang et al. (2009) and Shearer et al. (2009) showed that the type species of Anguillospora, A. longissima, groups with three species of Amniculicola including the type, A. lignicola, within Pleosporales, thus Anguillospora and Amniculicola are synonyms. Although more species of Anguillospora have been described, these aquatic hyphomycetous fungi tend to be morphologically convergent with most sequenced species belonging in the Leotiomycetes (Belliveau & Barlocher 2005, Baschen et al. 2006, Duarte et al. 2013). Although 18 species have been described in Anguillospora, five are known to belong in the Leotiomycetes, another in the Orbiliomycetes, and one in the Dothideales but not related to Amniculicola. Only the type species of Anguillospora, A. longissima, is monophyletic with the three species of Amniculicola. Thus, if Amniculicola is protected over Anguillospora, only one new combination is required. The use of Anguillospora with a new type species belonging to the Leotiomycetes will be proposed. This will conserve Anguillospora in the sense in which it has been most commonly used.

One new combination is necessary:

Amniculicola longissima (Sacc. & P. Syd.) Nadeeshan & K.D. Hyde, comb. nov.
MycoBank MB819029

Use Atichia Fiot. 1850 (A) rather than Seuratia Pat. 1904 (S)
Atichia glomerulosa, the older name for A. mosigii, type species of Atichia, is commonly reported as a lichen-like, superficial, gelatinous, black fungus on evergreen leaves in warm temperate and tropical regions (Meeker 1975, Gillis & Glawe 2008). Its sexual morph was described as Seuratia coffeicola, later referred to as S. millardetii, type species of Seuratia (Meeker 1975). Three names have been placed in Seuratia, two of which have names in Atichia. Although Atichia includes 20 names, many of these appear to be synonyms. These fungi are most commonly reported as Atichia and that
generic name has priority, thus *Atichia* is recommended for use.

The following new combination is required:

Atichia maunauluana (Meeker) Rossman, **comb. nov.**

MycoBank MB819030

Use Blasdalea Sacc. & P. Syd. 1902 (S) rather than *Chrysogloeum* Petr. 1959 (A) or *Singeriella* Petr. 1959 (S)

Petrak (1959) established the monotypic genus *Chrysogloeum* based on *C. peruvianum* to accommodate the asexual morph of *Singeriella peruvianum*, montotype of *Singeriella*. According to Kirk et al. (2008), *Singeriella* is a synonym of the monotypic *Blasdalea* based on *B. disciformis*. Hence, these three monotypic generic names are all based on the same species. Swart (1971) established the family Vizellaceae for the genera *Blasdalea* and *Vizella*. Neither *Chrysogloeum* nor *Singeriella* have been considered by any but the original author. *Blasdalea* has priority, thus this generic name is recommended for use.

Use Capnodium Mont. 1849 (S) rather than the additional synonym *Fumagospora* G. Arnaud 1911 (A)

Following Hughes (1976), Crous et al. (2007) demonstrated that the sexual morph of *Fumagospora*, *F. capnodioides*, is *Capnodium salicinum*, a synonym of *Capnodioides*, thus *Fumagospora* is an additional synonym of *Capnodium*, which was recommended for protection over *Polychaeton* 1846 by the Dothideomycetes Working Group (Rossman et al. 2015b).

Use Diliophospora Desm. 1840 (A) rather than *Lidophia* J. Walker & B. Sutton 1974 (S)

Twist disease caused by *Diliophospora alopecuri* occurs on the leaves, stems and glumes of cereals and grasses in temperate regions throughout the world (Gibson & Sutton 1976, Riley 1996). The generic name *Diliophospora* is based on the type species, *D. graminis*, a synonym of *D. alopecuri* (Walker & Sutton 1974). The generic name *Lidophia* was established by Walker & Sutton (1974) for the later homonym *Dilophia* Sacc. 1883 non *Dilophia* Thomson 1853 (*Brassicaceae*). The type species of *Lidophia* is *L. graminis* based on *Dilophia graminis*, the sexual morph of *Diliophospora alopecuri* (Walker & Sutton 1974), thus *Diliophospora* and *Lidophia* are synonyms. *Lidophia* is a monotypic genus while *Diliophospora* now includes two species. *Diliophospora* is widely used, and has priority, thus we recommend the use of *Diliophospora*.

Six new combinations in Elsinoë

Based on deliberations of the Dothideomycetes Working Group (Rossman et al. 2015b), it was recommended that the generic name *Elsinoë* should be protected over *Sphaceloma*. Six names in *Sphaceloma* of importance to plant quarantine officials in the United States are herein transferred to *Elsinoë*

Elsinoë bucidae (A.M.J. Watson & Jenkins) Romberg & W.C. Allen, **comb. nov.**

MycoBank MB819031

Elsinoë caricae (Ikata & Katsuki) Romberg & W.C. Allen, **comb. nov.**

MycoBank MB819032

Elsinoë choisyae (A.M.J. Watson & Jenkins) Romberg & W.C. Allen, **comb. nov.**

MycoBank MB819033

Elsinoë paeoniae (Kuros.) Romberg & W.C. Allen, **comb. nov.**

MycoBank MB819034

Elsinoë psidii (Bitanc. & Jenkins) Romberg & W.C. Allen, **comb. nov.**

MycoBank MB819035

Elsinoë zorniae (Bitanc. & Jenkins) Romberg & W.C. Allen, **comb. nov.**

MycoBank MB819036

In addition, *Sphaceloma fawcettii* var. *scabiosa*, differentiated from *Elsinoë fawcettii* on the basis of morphological and cultural characteristics, should be considered synonymous with *E. fawcettii* based on molecular analyses (Tan et al. 1996, Hyun et al. 2009).

Use Eupelte Syd. 1924 (S) rather than *Maurodothina* G. Arnaud ex Piroz. & Shoemaker 1970 (S) or *Pirozynskaia* Subram. 1972 (A)

The genus *Eupelte*, based on *E. amicta*, was considered by von Arx & Müller (1975) to include the type species of two other genera, namely *E. dothideoides*, type of *Maurodothina*, and *E. farraei*, the sexual morph of the type of *Pirozynskaia*, *P. farraei*, thus these three generic names are synonyms. *Eupelte farraei* causes a black mildew on *Abies* in north temperate regions (*Pirozynski* & Shoemaker 1970). Among the four names included in these three genera, all but one have been included in *Eupelte*, thus use of the oldest generic name is recommended.

Eupelte shoemakeri (Subram.) Rossman, **comb. nov.**

MycoBank MB819037

Use Koordersiella Höhn. 1909 (S) rather than Hansfordiellopsis Deighton 1960 (A) and Ascohansfordiellopsis D. Hawksw. 1979 (S)

The synonymy of these three lichenicolous generic names was presented by Hawksworth (2016). Based on morphology, he considered the type species of Koordersiella, K. javanica, and the type species of Hansfordiellopsis, H. aburiensis (now regarded as a synonym of K. insectivora), to be congeneric. Although Hansfordiellopsis includes eight species names while Koordersiella has only five, he accepted priority because all of these fungi are relatively obscure and thus used Koordersiella, and we concur.

Protect Metacapnodium Speg. 1918 (S) over Antennularia Rchb. 1838 (S) and rather than Torulopsisia Bender 1932 (A), Capnocybe S. Hughes 1966 (A), Capnophialophora S. Hughes 1966 (A), Capnobotrys S. Hughes 1970 (A), and Capnosporium S. Hughes 1976 (A)

The genus Metacapnodium is typified by M. juniperi (Hughes 1972). This genus was recently considered to be congeneric with Antennularia based on A. ericiphila, which was placed in Metacapnodium as M. ericiphillum (Hyde et al. 2013). In addition they considered Capnocybe typified by C. fraserae to be an asexual morph of Metacapnodium fraserae (Hughes 1976). Hughes (1972, 1981) also listed Capnobotrys, Capnophialophora and Torulopsisia as names for the synanamorphs of Metacapnodium. Thus these six generic names compete for use. Four of these names, Capnocybe with three species, Capnophialophora with three species, monotypic Capnosporium, and Torulopsisia with two species, are rarely used. Although Antennularia includes 17 names and Capnobotrys includes ten, Metacapnodium with 14 names is widely used and should be protected as suggested in Hyde et al. (2013).

Use Microxiphium (Harv. ex Berk. & Desm.) Thüm. 1879 (A) rather than Dennisiella Bat. & Cif. 1962 (S)

The generic name Microxiphium (previously often spelled “Microxyphium”) is typified by M. footii while the type of Dennisiella is D. babingtonii. The types of these generic names are considered the same species (Dennis & Ellis 1952, Hughes 1976, Sivanesan 1984). Little molecular study has been conducted on these fungi, nevertheless, Microxiphium fagi, the earliest name for this species (Hughes 1976), is reported commonly in the literature. At present Microxiphium includes 33 names while Rocha et al. (2010) provided a key to the nine species of Dennisiella. Based on priority, the greater number of names, and widespread use, Microxiphium is recommended for use.

Use Mirandina G. Arnaud ex Matsush. 1975 (A) rather than Chaetonecstrioides Matsush. 1996 (S)

The type of Mirandina, M. corticola, is a relatively common fresh-water hyphomycete that is known from Europe and Asia (Czezczuga et al. 2007, Kobayashi 2007). The sexual morph of the congeneric species, M. flagelliformis, was described as Chaetonecstrioides malaysiana, in the monotypic genus Chaetonecstrioides, thus these generic names are synonyms. About 10 species have been included in Mirandina with two species described recently (Ma et al. 2015, Fiuza et al. 2016). No DNA sequences exist for any of these species. Given the greater number of species and priority, use of Mirandina is recommended.

Use Protoventuria Berl. & Sacc. 1887 (S) rather than Ramalia Bat. 1957 (A)

The genus Protoventuria is typified by P. rosea based on Venturia rosae and includes 46 names. Zhang et al. (2012) demonstrated that this species groups with Protoventuria alpina to form a distinct lineage of Dothideomycetes that should be regarded as Protoventuria. The type species of Ramalia, R. veronicae, was placed in the genus Fusciadium as F. veronicae by Sutton & Pascoe (1988). They also described Protoventuria parahericola for the sexual morph of this species, which causes leaf spots on Parahebe (Scrophulariaceae), thus Protoventuria and Ramalia are synonyms. Although one additional name, R. byronimatis was described in Ramalia (Braun & Mouchacca 2000), that name has remained obscure. Protoventuria includes over 40 names, is widely used, and has priority over Ramalia, thus Protoventuria is recommended for use.

Use Sarcinella Sacc. 1880 (A) rather than Schiffnerula Höhn. 1909 (S) and Questierella S. Hughes 1983 (A)

When Hughes (1983) described the genus Questierella based on Q. pulchra, he stated that the sexual morph was Schiffnerula pulchra and that Sarcinella heterospora, type of Sarcinella, represented a second asexual morph of the same species. Thus the generic names Sarcinella and Questierella are synonyms. Earlier Hughes (1952) had distinguished the asexual morph of Schiffnerula mirabilis, type of the genus Schiffnerula, from S. pulchra. Hughes (1952) and Hosagoudar (2003) considered S. mirabilis and S. pulchra to be congeneric, thus Schiffnerula is also congeneric with Questierella and Sarcinella. A second species of Schiffnerula, S. corni, was described from Quebec having Questierella and Sarcinella synasexual morphs (Hughes 1990), again suggesting this generic synonymy. None of these species have been sequenced. Sarcinella provides the oldest generic name for these fungi, is used about equally with Schiffnerula, and has about the same number of names, thus the principle of priority is followed and Sarcinella is recommended for use.

The following new combinations are required:

Sarcinella mirabilis (Höhn.) Seifert, comb. nov.
MycoBank MB819038

Sarcinella pulchra (Sacc.) Seifert, comb. nov.
MycoBank MB819044
Basionym: Apiosporium pulchrum Sacc., Mycoth. Univ. cent. 1: no. 52 (1875).
An additional new combination in *Schizothyrium*

Previously the generic name *Schizothyrium* was recommended for use rather than *Zygothallus* and most names have been placed in *Schizothyrium*, however, one name was overlooked.

Schizothyrium jamaicense (E.W. Mason) Rossman, comb. nov.
MycoBank MB819039

Use Trichothallus D. Stevens 1925 (A) rather than Plokomidomyces Bat. et al. 1957 (A) or Trichopeltheca Bat. et al. 1958 (S)

Hughes (1965) monographed *Trichopeltheca* and accepted two species including the type species *T. asiatica* and listing the type species of *Plokomidomyces*, *P. colensoi*, as a synonym. He also accepted a second species, *T. stevensii*, with the type species of *Trichothallus*, *T. hawaiiensis*, as a synonym, thus these three generic names are synonyms. These sooty moulds develop from a distinctive one-cell thick stroma growing over living plant tissue, with setae, conidia and perithecia developing from the same stroma. Although there are no cultures or DNA sequence data, there is little doubt that these two species are congeneric and that the constitutive morphs are part of the same fungus. None of the three generic names is frequently cited in the literature. Adopting either the older asexual morph name *Trichothallus* or the sexual morph name *Trichopeltheca* would require making a new combination. We opt to respect priority in this case and recommend the adoption of the oldest generic name *Trichothallus*.

Trichothallus niger (Jennings) Seifert, comb. nov.
MycoBank MB819047
Type: New Zealand: Rotorua, on *Nesodaphne towa* (sic, = *Beilschmiedia tawa*), A.V. Jennings (DBN-lectotype designated here, MBT-isotype).

Notes: On the basis of the protologue of *Phycopeltis nigra*, Santesson (1944) concluded that the type material was mixed and that the name should be considered a *nomen confusum*, as was common practice at the time and permitted under the Code then in force. Hughes (1965) examined co-type (i.e. syntypes) specimens in DBN and MBT and recognized that *P. nigra* was identical with *T. asiatica*, arguing that the "type form" described in the protologue corresponded with the *Trichopeltheca* component. He did not make the new combination, presumably because the species had originally been described as an alga. The lectotype proposed above is selected based on Hughes’ observations.

Use Xenodium Syd. 1935 (S) rather than Xenoidiella Syd. 1935 (A)

The generic names *Xenodium* typified by *X. petrakii* and *Xenoidiella* typified by *X. petrakii* were published in the same article as sexual and asexual morphs of the same species (Sydow 1935), thus these generic names are synonyms. Both generic names are monotypic, however, *Xenodium* has been used in the literature more than *Xenoidiella*, thus *Xenodium* is recommended for use.

Use Yoshinagaia Henn. 1904 (A) rather than Japonia Höhn. 1909 (S), Yoshinagamyces Hara 1912 (A) or Monoloculia Hara 1927 (A)

The type species of each of these four monotypic generic names, *Yoshinagaia*, *Japonia*, *Yoshinagamyces* and *Monoloculia*, are the same species as explained by Sivanesan & Hsieh (1995). All of the names are relatively obscure but *Yoshinagaia* is used more frequently than the others. In addition, *Japonia* is also used as the name for an insect, thus we recommend use of the name that has priority, namely *Yoshinagaia*.

The nomenclator for the type species of these four generic names is:

Yoshinagaia quercus Henn., *Hedwigia* 43: 143 (1904).

REFERENCES

Fiuza PO, Monteiro JS, Gusmãoa LFP, Castañeda-Ruiz RF (2016) Mirandina uncinata sp. nov. from submerged leaves from Brazil. Mycotaxon 131: 141–144.

Fries EM (1819) Novitiae florae Sueciae. Part. 5: Lund: Berling.

Rossman AY, Udayanga D, Castlebury LA, Hyde KD (2014) Proposal to conserve the name Diapothoe eres, with a conserved type, against all other competing names (Ascomycota, Diaphorales, Diaporthaceae). Taxon 63: 934–935.

Stadler M, Kuhnert E, Peršoh D, Fournier J (2013) The Xylariaeae as model example for a unified nomenclature following the “One
fungus-one name” (1F1N) concept. *Mycology* 4: 5–21.

