Recommendations of generic names in *Diaporthales* competing for protection or use

Amy Y. Rossman¹, Gerard C. Adams², Paul F. Cannon³, Lisa A. Castlebury⁴, Pedro W. Crous⁵, Marieka Gryzenhout⁶, Walter M. Jaklitsch⁷,⁸, Luis C. Mejia⁹,¹⁰, Dmitar Stoykov¹¹, Dhanushka Udayangana¹², Hermann Voglmayr¹², and Donald M. Walker¹³

¹Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA; corresponding author e-mail: amydiander@yahoo.com
²Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68503, USA
³Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK
⁴Systematic Mycology & Microbiology Laboratory, USDA-ARS, Beltsville, Maryland 20705, USA
⁵CBS-KNAW Fungal Biodiversity Institute, Uppsalaalaan 8, 3584 CT Utrecht, The Netherlands
⁶Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
⁷Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
⁸Institute of Forest Entomology, Forest Pathology and Forest Protection, Dept. of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Peter Jordan-Straße 82, 1190 Vienna, Austria
⁹Center for Cellular and Molecular Biology of Diseases, Institute for Scientific Research and High Technology Services (INDICASAT-AIP), P.O. Box 0843-01103, Panama
¹⁰Smithsonian Tropical Research Institute, P.O. Box 0843-03092, Balboa, Panama
¹¹Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 113 Sofia, Bulgaria
¹²Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
¹³Department of Natural Sciences, Findlay University, Findlay, Ohio 45840 USA

Abstract: In advancing to one name for fungi, this paper treats generic names competing for use in the order *Diaporthales* (*Ascomycota, Sordariomycetes*) and makes a recommendation for the use or protection of one generic name among synonymous names that may be either sexually or asexually typified. A table is presented that summarizes these recommendations. Among the genera most commonly encountered in this order, *Cytospora* is recommended over *Valsa* and *Diaportha* over *Phomopsis*. New combinations are introduced for the oldest epithet of important species in the recommended genus. These include *Amphiporthe tiliae*, *Coryneum lanciforine*, *Cytospora brevispora*, *C. ceratosperma*, *C. cinereostroma*, *C. eugeniae*, *C. fallax*, *C. myrtagena*, *Diaportha amaranthrophila*, *D. annonacearum*, *D. bougainvilleicola*, *D. caricae-papayae*, *D. coccina*, *D. cucurbitae*, *D. juniperivora*, *D. leptostromiformis*, *D. pterophila*, *D. theae*, *D. vitimegaspora*, *Mastigosporella georgiana*, *Pulidiella angustispora*, *P. calamicola*, *P. pseudogranati*, *P. stromalica*, and *P. terminaliae*.

Key words: Article 59
Ascomycetes
Fungi
nomenclature
one fungus-one name
pleomorphic fungi
taxonomy
unit nomenclature

INTRODUCTION

The order *Diaporthales* includes 12 families with about 50 genera. In moving to one name for fungi in accordance with the *International Code of Nomenclature for algae, fungi and plants* (ICN; McNeill et al. 2012), two or more genera typified by a sexual or asexual morph may compete for use. Many genera in *Diaporthales* are known primarily from their sexual morphs and do not have competing generic names for their asexual morphs and vice versa; these are not considered here. A number of resources were consulted in order to find competing pairs of generic names in the order, including Wijayawardene et al. (2012) and the USDA SMML Fungal Databases (url: http://nt.ars-grin.gov/sbmlweb/fungi/index.cfm). The procedure for determining whether two genera are synonyms based on their type species and the factors that were reviewed in considering which genus to recommend for use or protection are outlined in Johnston et al. (2014). In that paper recommendations are made for competing genera in *Leotiomycetes*.

Following are recommendations for generic names in *Diaporthales* for use or protection when two or more names are synonyms. Although in general this follows the principle of priority, there are situations in which it is advantageous to...
Protect a generic name that does not have priority by date of publication but has commonly been used as explained in Johnston et al. (2014). A synopsis of these recommendations for generic names in Diaporthales is provided in Table 1, which includes a list of competing generic names with the citation and type species. These generic names have been compared with those listed in Kirk et al. (2013). In most cases both names are listed there; in one case the recommended name is not included but it is anticipated that the list will be modified to be consistent with the recommendations proposed here, indeed some of these are already included in the updated online version of that list prepared for IMC10 (http://www.indexfungorum.org/GeneraOfFungi/).

RECOMMENDATIONS

Protect Amphiporthe 1971 over Amphicytostroma 1921
The type species of Amphiporthe, A. hranicensis based on Diaportha hranicensis, is the sexual morph of the type species of Amphicytostroma, A. tiliae based on Cytospora tiliae, according to Petrak (1921) and Sutton (1980), thus these generic names are synonyms. This species occurs on dead branches of Tilia in Europe (Farr & Rossman 2015). Five names have been described in Amphiporthe while only two names have been included in Amphicytostroma. The second name in Amphicytostroma, A. quercinum based on Gloeosporium quercinum, is the asexual morph of Amphiporthe leiphaemia based on Sphaeria leiphaemia, cause of stem and twig lesions of oak in Europe (Sieber et al. 1995). Sogonov et al. (2008) showed that Amphiporthe hranicensis belongs in Gnomoniaceae while A. castanea and A. leiphaemia are unrelated to A. hranicensis and fall elsewhere in Diaporthales (Zhang & Blackwell 2001; Castlebury, unpubl.); these species should be placed in another genus. Amphiporthe is more widely used than Amphicytospora, thus it seems best to protect Amphiporthe. Both names are included in Kirk et al. (2013), thus it is recommended that Amphicytospora be deleted.

Amphiporthe tiliae (Sacc.) Rossman & Castl., comb. nov.
Mycobank MB812583
Basionym: Cytospora tiliae Sacc., Michelia 1: 519 (1879).

Protect Apiognomonia 1917 over Discula 1884
The genus Apiognomonia has recently been well-defined including five species (Sogonov et al. 2008) based on the type species, A. veneta, which had previously been distinguished from A. errabunda (Sogonov et al. 2007). The lectotype species of Discula, D. quercina, now considered a synonym of D. umbrinella (Sutton 1980), is the asexual morph of Apiognomonia errabunda; thus Apiognomonia and Discula are synonyms. Apiognomonia errabunda is the cause of anthracnose of oak and various hardwood trees (Boege et al. 1954, Neely & Himelick1967, Hepting 1971, Sinclair et al. 1987, Hibben & Daughtrey 1988). The concept of the genus Discula has never been clearly defined with species having diverse affinities in Gnomoniaceae. A number of species placed in Discula have been linked with species of Ophiognomonia (Sogonov et al. 2008, Walker et al. 2014). The cause of dogwood anthracnose in North America, Discula deestructiva, is not congeneric with the type of Discula nor does it group with Ophiognomonia (Sogonov et al. 2008). Given the ill-defined concept of Discula and that a number of species are now linked with the genus Ophiognomonia, we recommend the protection and use of Apiognomonia. Both names are listed in Kirk et al. (2013), thus it is recommended that Discula be deleted.

Use Coryneum 1816 rather than Pseudovalsa 1863
The type species of Coryneum, C. umbonatum, is the asexual morph of Pseudovalsa longipes, while the type species of Pseudovalsa, P. lanciformis, is considered the sexual morph of Coryneum brachyurum (Sutton 1975). Assuming that P. lanciformis and P. longipes are congeneric, then Coryneum and Pseudovalsa are synonyms. Sutton (1975) monographed Coryneum and accepted 19 species, referring many additional names to other genera. Many of the commonly reported plant pathogenic species previously known as Coryneum have now been placed in other genera such as Seiridium cardinale (syn. Coryneum cardinale), cause of cypress canker (Danti et al. 2014, Sutton & Gibson 1972), and Thyrostroma carpophilum (syn. Coryneum carpophilum, Stigmina carpophila, and Coryneum bayerincki), cause of shot-hole disease of Rosaceae (Sutton 1997, Tovar-Pedraza et al. 2014). Although 68 names have been described in Pseudovalsa and three important species have been shown to group together (de Silva et al. 2009), many species of Pseudovalsa are now placed in other genera. These two genera are about equal in the number of currently accepted species and a monograph of Coryneum exists, thus it seems advisable to use the earliest name, Coryneum. Among the species of Coryneum known to have Pseudovalsa sexual morphs, only one requires a name change. Both generic names are listed in Kirk et al. (2013) thus it is recommended that Pseudovalsa be deleted.

Coryneum lanciforme (Fr.) Voglmayr & Jaklitsch, comb. nov.
Mycobank MB812584
Basionym: Sphaeria lanciformis Fr., Observ. mycol. 2: 324 (1818).

Use Cryphonectria 1905 rather than Endothiella 1906
The generic name Cryphonectria was recently conserved with the type species, C. parasitica (Gryzenhout et al. 2005), widely known as the cause of chestnut blight in North America (Anagnostakis 1987). Many additional species of
Cryptonectria have been discovered on woody plants in both temperate and tropical regions (Gryzenhout et al. 2009). The generic name *Endothiella* based on the type species, *E. gyrosa*, is now placed in *Cryptonectria* as *C. decipiens* (Gryzenhout et al. 2009). *Endothiella* has been used for the asexual morphs of species of *Cryptonectria*. Given the widespread use of the name *Cryptonectria* and its priority, this name is recommended for use. Both names are included in Kirk et al. (2013) thus it is recommended that *Endothiella* be deleted.

Use Cryptosporella rather than Disculina 1916
The genus *Cryptosporella*, based on the type species *C. hypodermia*, has recently been monographed by Mejia et al. (2008, 2011b) and includes 19 species. The genus *Disculina* is based on *D. neessii*, regarded as *D. vulgaris* by Sutton (1980), who considered it the asexual morph of *Ophiovalsa suffusa*, now placed in *Cryptosporella* as *C. suffusa* (Mejia et al. 2008). Thus, *Cryptosporella* and *Disculina* are synonyms. Given that *Cryptosporella* has priority and has been recently monographed, while *Disculina* includes only six names, we recommend the use of *Cryptosporella*. Both names are included in Kirk et al. (2013) thus it is recommended that *Disculina* be deleted.

Use Cytospora 1818 rather than Valsa 1825, Valsella 1870, Leucostoma 1917, Valseutypella 1919, or Leucocytospora 1927
 Numerous diseases of woody plants including those of economic importance are caused by species of the asexual genus *Cytospora* and its sexual counterpart *Valsa* and related genera *Leucocytospora*, *Leucostoma*, *Valsella*, and *Valseutypella*. The type species of *Cytospora*, *C. chrysosperma* as clarified by Donk (1964), is the asexual morph of *Valsa sordida* and commonly causes cankers on members of Salicaceae (Callan 1998). The type species of *Valsa*, *V.ambiens*, is linked with *C. leucosperma* (Spelman 1985, Hayova & Minter 1998). There is no question that these generic names are synonyms as their type species are congeneric. Both names have been widely used. At present 562 names have been described in *Cytospora*, while *Valsa* includes 875 names. Given that *Cytospora* is the oldest name and that several recent accounts of *Cytospora* species have been published (Adams 2005, Fotouhifar et al. 2010, Fan et al. 2014), it seems best to use the generic name that has priority, namely *Cytospora*. The genus *Valsella* is based on *V. salicis*, now considered a synonym of *Cytospora fertilis*. An isolate of *V. salicis* grouped with others species now considered *Cytospora* (Castlebury et al. 2002). The type species of *Leucostoma*, *L. massarianum*, falls within the genus *Cytospora* (Adams et al. 2002, 2005) near *Cytospora mali* and *C. persononi* and thus *Leucostoma* is also a synonym of *Cytospora*. Adams et al. (2005) listed *Leucocytospora* as a synonym of *Cytospora* although the type species of *L. corni* was not included in the study. *Leucostoma* and *Leucocytospora* were described for species similar to *Cytospora* and *Valsa* that have a whitish ring around the ostiole. This characteristic occurs in many species of *Cytospora* scattered throughout the genus (Castlebury et al. 2004, Adams et al. 2005). The type species of *Valseutypella*, *V. tristicha* on Rosa spp., was also determined to fall within *Cytospora* based on molecular sequence data (Castlebury, unpubl.) and as suggested by Hubbes (1960) who described the asexual morph. No molecular data exist to support segregate genera within *Cytospora*, thus these generic names are all considered synonyms of *Cytospora*. *Cytospora* as well as *Leucostoma*, *Valsa*, *Valsella*, and *Valseutypella* are included in Kirk et al. (2013) while *Leucocytospora* is not. It is recommended that *Leucostoma*, *Valsa*, *Valsella* and *Valseutypella* be deleted.

Many names previously recognized in *Valsa* already have an older epithet in *Cytospora* with the correct scientific names presented in the SMML Fungal Databases (http://int.ars-grin.gov/fungaldatabases/). New names for the common species of *Cytospora* previously placed in *Valsa* are provided here:

Use Diaporthe 1870 rather than Phomopsis 1884
 Species in both *Diaporthe* and *Phomopsis* have been used for fungi that cause canker diseases of woody plants such as *D. citri*, cause of citrus melanose (Mondal et al. 2003), *D. sojae*, cause of pod and stem blight of soybean (Udayanga et
Table 1. Recommended generic names of Diaporthales among those that compete for use and their synonyms. The recommended generic name is listed in bold; see text for the rationale for these recommendations. For each generic name this list provides the author, its date and place of publication, the type species of the genus, its basionym, their dates of publication, and the currently accepted name, if different. The action required is indicated in the last column such as protection of names that do not have priority.

<table>
<thead>
<tr>
<th>Accepted genus</th>
<th>Rejected genus</th>
<th>Action required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coryneum Nees, Syst. Pilze: 34. (1816); type species: C. umbonatum Nees (1816)</td>
<td>Pseuofvalsa Ces. & De Not., Comment. Soc. Crittogam. Ital. 1: 206 (1863); type species: P. lanciformis (Fr.) Ces. & De Not. (1863), basionym: Sphaeria lanciformis Fr. (1818), now Coryneum lanciforme (Fr.) Voglmayr & Jaklitsch (2015)</td>
<td>Use Coryneum (1816) rather than Pseuofvalsa (1863)</td>
</tr>
</tbody>
</table>
Table 1. (Continued).

<table>
<thead>
<tr>
<th>Accepted genus</th>
<th>Rejected genus</th>
<th>Action required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endothia</td>
<td>Calopactis Fr. & P. Syd., Annls. mycol. 10: 82 (1912); type species: C. singularis Fr. & P. Syd., now Endothia singularis (Syd.) Shear & N.E. Stevens (1917)</td>
<td>Use Endothia (1849) rather than Calopactis (1912)</td>
</tr>
<tr>
<td>Massariovalsa</td>
<td>Melanconiopsis Ellis & Everh., Bull. Torrey Bot. Club 27: 575 (1900); type species: M. inquinans Ellis & Everh. (1900), now Massariovalsa sudans Berk. & M.A. Curtis (1876)</td>
<td>Use Massariovalsa (1882) rather than Melanconiopsis (1900)</td>
</tr>
<tr>
<td>Melanconis</td>
<td>Melanconium Link, Mag. Gesell. naturf. Freunde, Berlin 3(1–2): 9 (1809); type species: M. atrum Link (1809)</td>
<td>Protect Melanconis (1863) over Melanconium (1832)</td>
</tr>
<tr>
<td>Pilidiella</td>
<td>Schizoparme Shear, Mycologia 15: 120 (1923); type species: S. straminia Shear (1923), now Pilidiella castaneicola (Ellis & Everh.) Arx (1957), basionym Gloeosporium castaneicola Ellis & Everh. (1895)</td>
<td>Protect Pilidiella (1927) over Schizoparme (1923)</td>
</tr>
<tr>
<td>Plagiostoma</td>
<td>Diplodina Westend., Bull. Acad. Roy. Sci. Belgique, Cl. Sci. ser. 2. 2: 562 (1857); type species: D. salicis Westend. (1857), now Plagiostoma apiculata (Wallr.) L.C. Mejía (2011)</td>
<td>Protect Plagiostoma (1870) over Diplodina (1857), additional synonyms Septomyxa (1884) and Cryptodiaporthes (1921)</td>
</tr>
<tr>
<td>Stilbospora</td>
<td>Prosthecium Fresen., Beitr. Mykol. 2: 62 (1852); type species: P. ellipsosporum Fresen. (1852), now Stilbospora macrospora Pers. (1801)</td>
<td>Use Stilbospora 1794 rather than Prosthecium (1852)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accepted genus</th>
<th>Rejected genus</th>
<th>Action required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diaporthe</td>
<td>Diplodina Westend., Bull. Acad. Roy. Sci. Belgique, Cl. Sci. ser. 2. 2: 562 (1857); type species: D. salicis Westend. (1857), now Plagiostoma apiculata (Wallr.) L.C. Mejía (2011)</td>
<td>Protect Plagiostoma (1870) over Diplodina (1857), additional synonyms Septomyxa (1884) and Cryptodiaporthes (1921)</td>
</tr>
<tr>
<td>Phomopsis</td>
<td>Melanconium Link, Mag. Gesell. naturf. Freunde, Berlin 3(1–2): 9 (1809); type species: M. atrum Link (1809)</td>
<td>Protect Melanconis (1863) over Melanconium (1832)</td>
</tr>
<tr>
<td>Septomyxa</td>
<td>Schizoparme Shear, Mycologia 15: 120 (1923); type species: S. straminia Shear (1923), now Pilidiella castaneicola (Ellis & Everh.) Arx (1957), basionym Gloeosporium castaneicola Ellis & Everh. (1895)</td>
<td>Protect Pilidiella (1927) over Schizoparme (1923)</td>
</tr>
<tr>
<td>Cryptodiaporthes</td>
<td>Diplodina Westend., Bull. Acad. Roy. Sci. Belgique, Cl. Sci. ser. 2. 2: 562 (1857); type species: D. salicis Westend. (1857), now Plagiostoma apiculata (Wallr.) L.C. Mejía (2011)</td>
<td>Protect Plagiostoma (1870) over Diplodina (1857), additional synonyms Septomyxa (1884) and Cryptodiaporthes (1921)</td>
</tr>
</tbody>
</table>

al. 2015, and *D. vaccinii,* cause of blueberry and cranberry twig blight (Friend & Boone 1968, Milholand & Daykin 1983, Oudemans et al. 1998), as well as endophytes in herbaceous and woody plants (Castlebury et al. 2002). When most names of *Diaporthe* or *Phomopsis* were described, species in these genera were considered to be host specific. However, recent studies using molecular data have shown that, while a few species are host-specific, many others have a broad host range. Most species of *Diaporthe* can be identified only through the use of molecular sequences (Udayanga et al. 2014a, b). About 1000 names have been described in each genus including many that are sexual and asexual morphs of the same species.

Recently the type species of *Diaporthe,* *D. eres,* has been carefully circumscribed (Udayanga et al. 2014a) and this name is conserved against 21 obscure earlier names (Rossman et al. 2014). The type species of *Phomopsis,* *P. lactucae,* has not been as clearly defined but there is no doubt that it is congeneric with *Diaporthe* and that *Diaporthe* and *Phomopsis* are synonyms. *Diaporthe* and *Phomopsis* have been used about equally, thus, it seems best to use the name that has priority, *Diaporthe.* *Diaporthe* but not *Phomopsis* is listed in Kirk et al. (2013).

Determining the correct name for species of *Diaporthe* is difficult considering that names in both genera must be taken into account and defining old names is nearly impossible. Due
to the lack of distinct morphological characteristics, examination of type specimens is only marginally useful. In his monograph of Diaporthe, Wehmeyer (1933) listed many synonyms under each of the species that he recognized. As in the case of D. eres, some of these names are older. Many names previously recognized in Phomopsis already have an older epithet in Diaporthe with the correct scientific names presented in the SMML Fungal Databases (http://nt.ars-grin.gov/fungaldatabases/). However, a number of the most important and some recently described names in Phomopsis are here transferred to Diaporthe.

Diaporthe amaranthophila (Inácio et al) Rossman & Udayanga, **comb. nov.**
MycoBank MB812492

Diaporthe annonacearum (Bond.-Mont.) Rossman & Udayanga, **comb. nov.**
MycoBank MB812493

Diaporthe bougainvilleicola (M.M. Xiang et al.) Rossman & Udayanga, **comb. nov.**
MycoBank MB812494

Diaporthe caricae-papayae (Petr. & Cif.) Rossman & Udayanga, **comb. nov.**
MycoBank MB812495

Diaporthe cocoina (Cooke) Rossman & Udayanga, **comb. nov.**
MycoBank MB812496
Phylllosticta cocos Cooke, *Grevillea* 8: 94 (1880).

Diaporthe cucurbitae (McKeen) Udayanga & Castl., **comb. nov.**
MycoBank MB812623
This new combination was published in Udayanga et al. (2015) but without a registration number, so was not validly published there (Art. 42.1).

Diaporthe juniperivora (G.G. Hahn) Rossman & Udayanga, **comb. nov.**
MycoBank MB812497

Diaporthe leptostromiformis (J.G. Kühn) Rossman & Udayanga, **comb. nov.**
MycoBank MB812498

Diaporthe pterophila (Nitschke ex Fuckel) Rossman & Udayanga, **comb. nov.**
MycoBank MB812508

Diaporthe theae (Petch) Rossman & Udayanga, **comb. nov.**
MycoBank MB812499

Diaporthe vitimegaspora (K.C. Kuo & L.S. Leu) Rossman & Udayanga, **comb. nov.**
MycoBank MB812500

Use *Endothia* 1849 rather than *Calopactis* 1912
The type species of *Endothia*, *E. gyrosa*, and the monotype species of *Calopactis*, *C. singularis*, were shown to be congeneric by Gryzenhout (2009) who recognized *C. singularis* as the asexual morph of *E. singularis*. A number of diseases are caused by species of *Endothia* such as stem and twig canker of chestnut caused by *E. singularis* and twig canker of chestnut caused by *E. singularis* (Sung & Han 1986). Given the widespread use of the name *Endothia* with 32 names and its priority over *Endothia* with only one name, use of *Endothia* is recommended. *Endothia* but not *Calopactis* is included in Kirk et al. (2013).

Use *Massariovalsa* 1882 rather than *Melanconiopsis* 1900
The type species of *Massariovalsa*, *M. sudans*, is considered the sexual morph of *Melanconiopsis inquinans*, type species of *Melanconiopsis* (Wehmeyer 1939), thus these congeneric names are synonyms. Five names are included in *Massariovalsa* while eight fungi have been described in *Melanconiopsis*, some of which also have names in *Massariovalsa*. Suarez et al. (2000) discussed the disposition of these names in *Melanconiopsis* placing two of them in *Endomelanconium*. These generic names have been used about equally in the literature, referring primarily to *Massariovalsa sudans* (syn. *Melanconiopsis inquinans*). Neither genus has been recently monographed or studied using molecular data. Given the lack of rationale for using
Melanconiopsis and the lack of molecular data regarding the placement of species in either genus, the principle of priority should be followed, thus it is recommended that Massariovalsa be used. Both Massariovalsa and Melanconiopsis are listed in Kirk et al. (2013), thus it is recommended that Melanconiopsis be deleted.

Use Mastigosporella 1914 rather than Wuestneiopsis 1990

The type species of Mastigosporella, M. hyalina, is considered to be the asexual morph of Wuestneiopsis quercifolia (as Dicarrella quercifolia) (Barr 1979, Nag Raj 1981). The generic type of Wuestneiopsis is W. georgiana. Both of these Wuestneiopsis names were placed in the illegitimate later homonym Dicarrella Syd. & P. Syd. 1921 non Bory 1824 by Reid & Dowsett (1990). Given that the type species of Mastigosporella and Wuestneiopsis were considered to be congeneric by Barr (1978) and that Reid & Dowsett (1990) suggested that W. georgiana may have a Mastigosporella asexual morph, these genera appear to compete for synonymy. The genus Mastigosporella containing two species was monographed by Nag Raj (1981) with another species, M. anisophyloideae, added recently by Crous et al. (2013). Nag Raj (1981) examined the holotype of W. georgiana (as Dicarrella georgiana), which he considered to be the sexual morph of M. nyssae. Given that Mastigosporella is more widely used and has priority, use of Mastigosporella is recommended. Both Mastigosporella and Wuestneiopsis are listed in Kirk et al. (2013), thus Wuestneiopsis should be deleted. One new combination is needed.

MycoBank MB812501

Use Mazzantia 1855 rather than Mazzantiella 1925

The generic name for the sexual morph *Mazzantia*, based on *M. galii*, has been widely used and this genus includes 27 names. *Mazzantia galii* has been included in molecular studies of Diaporthales as a sister group for *Diaportha* (Udayangara et al. 2014a). *Mazzantiella*, based on *M. sepium*, was described as the asexual morph of *Mazzantia sepia*, thus these type species are most likely congeneric. Each of the three names in *Mazzantiella* has a sexual morph name in *Mazzantia*, thus no name changes are required if *Mazzantia* is maintained. Given the greater use of *Mazzantia*, its priority, and the lack of required name changes, use of *Mazzantia* is recommended. *Mazzantia* but not *Mazzantiella* is listed in Kirk et al. (2013).

Protect Melanconis 1863 over Melanconium 1832

Recently an account was provided of the type species of *Melanconis*, *M. stilbostoma* (Voglmayr et al. 2012) in distinguishing *Melanconis* from *Melanconium*. The concept of *Melanconium* based on the type species, *M. atrum*, remains obscure with many species placed in other genera such as *Arthrinium*, *Greeneria*, and *Harknessia*. Conidial size and morphology of the lectotype specimen of *Melanconium atrum* is similar to *Melanconis alni*, but the latter is specific to *Alnus* and not known from *Fagus*, the host given for *M. atrum*; the true identity of *M. atrum* remains obscure (Voglmayr et al. 2012). Although more names exist in *Melanconium*, these generic names are reported in about equal numbers. Given the confusion surrounding *Melanconium* and the well-defined concept of *Melanconis*, we recommend that *Melanconis* be protected over *Melanconium*. Both generic names are listed in Kirk et al. (2013).

Protect Pilidiella 1927 over Schizoparme 1923

The type species of Pilidiella, *P. quercicola*, is congeneric with the type species of Schizoparme, *S. straminea*, which is the sexual morph of *Schizoparme castaneicola* (van Niekerk et al. 2004). Species of the asexual *Pilidiella* have been more widely reported than those of the sexually typified *Schizoparme* (Samuels et al. 1993, Farr & Rossman 2015). Sixteen names exist in *Pilidiella* while only nine species of *Schizoparme* have been described, three of which already have names in *Pilidiella*. With the use of *Pilidiella* five species must be transferred from *Schizoparme*. However, more name changes would result if the name *Schizoparme* were used. Species of *Pilidiella* and the closely related but distinct genus *Coniella* are commonly encountered in plant-associated environments while the sexual morph *Schizoparme* is rarely reported, thus we recommend the use of *Pilidiella*. A number of diseases are caused by *Pilidiella*, including foliage blight of *quaresmeira* (Tibouchina granulosa) in Brazil caused by *P. tibouchiniae* (Miranda et al. 2012), and crown and stem rot of pomegranate (*Punica granatii*) caused by *P. granatii* (Celiker et al. 2012). *Pilidiella* is not listed in Kirk et al. (2013) and should be added while *Schizoparme* should be deleted.

Pilidiella angustispora (Samuels et al.) Rossman & Crous, *comb. nov.*

MycoBank MB812502

MycoBank MB812503

Pilidiella pseudogranati (Crous) Rossman & Crous, *comb. nov.*

MycoBank MB812504

ACKNOWLEDGEMENT

Hermann Voglmayr acknowledges financial support by the Austrian Science Fund (FWF; project P27645-B16).

REFERENCES

Pilidiella stromatica (Samuels et al.) Rossman & Crous, *comb. nov.*

Mycobank MB812505

Pilidiella terminaliae (Samuels et al.) Rossman & Crous, *comb. nov.*

Mycobank MB812506

Protect Plagiostoma 1870 over Diplodina 1857, and the additional synonyms Septomyxa 1884 and Cryptodiaporthe 1921

The type species of *Plagiostoma*, *P. euphorbiae*, has served as the basis for a monographic account of this genus (Mejia et al. 2011a) including a number of plant pathogens such as *P. populinumm*, cause of bark necrosis of white poplar (Melik & Zarudnaya 2008). The type species of *Diplodina, D. salicis*, is considered a synonym of *D. microsperma* by Sutton (1980), the asexual morph of *Plagiostoma aepiculata* (Mejia et al. 2011a); thus *Diplodina* and *Plagiostoma* are synonyms. Although *Diplodina* includes several hundred names, these names have been placed in diverse genera, such as *Ascochyta, Discella, Microdiplodia, and Phloeospora*, suggesting that the concept of *Diplodina* is poorly defined. The concept of *Plagiostoma*, however, is well-defined, and there are two recent monographic works on the genus including many new species (Mejia et al. 2011a, Walker et al. 2014). These accounts suggest that the protection of this generic name is warranted, which would prevent a significant number of name changes. The type species of *Septomyxa*, *S. aesculi*, and *Cryptodiaporthe, C. aesculi*, are both regarded as *Plagiostoma aesculi* (Mejia et al. 2011a), thus those later generic names are synonyms of *Plagiostoma*. Sutton (1977) listed six additional generic synonyms of *Diplodina* but this synonymy could not be confirmed. *Plagiostoma, Cryptodiaporthe*, and *Diplodina*, but not *Septomyxa*, are listed in Kirk et al. (2013), thus *Cryptodiaporthe* and *Diplodina* should be deleted.

Use Stilbospora 1794 rather than Prosthecium 1852

The type species of *Stilbospora*, *S. macrospora*, is the name applied to the asexual morph of the type species of *Prosthecium*, *P. ellipsosporum*; thus these generic names are synonyms (Voglmayr & Jaklitsch 2014). At present 26 names have been described in *Prosthecium*, while 85 names were placed in *Stilbospora*; however, most names in *Prosthecium* and *Stilbospora* should most likely be excluded from both of these genera (Voglmayr & Jaklitsch 2014). *Stilbospora* appears to be more widely used, has priority, and has recently been monographed with three accepted species (Voglmayr & Jaklitsch 2014). In addition, many species of *Prosthecium* were redispersed in *Stilbospora* and *Stegosporium* (Voglmayr & Jaklitsch 2008). *Stilbospora* appears to be more widely used, has priority, and has recently been monographed (Voglmayr & Jaklitsch 2014); thus, we recommend the use of *Stilbospora*. Both names are included in Kirk et al. (2013), and *Prosthecium* should therefore be deleted.

