Introducing Chaetothyriothecium, a new genus of Microthyriales

SINANG HONGSANAN¹,², PUTARAK CHOMNUNTI¹,², PEDRO W. CROUS³, EKACHAI CHUKEATIROTE¹,², KEVIN D. HYDE¹,²

¹Institute of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
²School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
³CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands

Corresponding author: Kevin D. Hyde. e-mail address: kdhyde3@gmail.com

Abstract

The order Microthyriales comprises foliar biotrophs, epiphytes, pathogens or saprobes that occur on plant leaves and stems. The order is relatively poorly known due to limited sampling and few in-depth studies. There is also a lack of phylogenetic data for these fungi, which form small black spots on plant host surfaces, but rarely cause any damage to the host. A “Microthyriaceae”-like fungus collected in central Thailand is described as a new genus, Chaetothyriothecium (type species Chaetothyriothecium elegans sp. nov.). Phylogenetic analyses of LSU gene data showed this species to cluster with other members of Microthyriales, where it is related to Microthyrium microscopicum the type of the order. The description of the new species is supplemented by DNA sequence data, which resolves its placement in the order. Little molecular data is available for this order, stressing the need for further collections and molecular data.

Key words: foliar epiphytes, Micropeltidaceae, Microthyriaceae, phylogenetic analyses

Introduction

Fungal foliar epiphytes are a polyphyletic group found on plants worldwide (Schoch et al. 2009, Li et al. 2011, Wu et al. 2011, Hyde et al. 2013). The group has been poorly studied, few cultures are available in culture collections, and DNA sequence data is lacking in public databases. One major contributing factor is the fact that many of these species are obligate parasites and cannot be cultured (Wu et al. 2011).

The order Microthyriales comprises foliar epiphytes, which mainly form small, inconspicuous, black spots on host leaves. The spots consist of flattened thyriothecia with various ostiole forms, while the basal wall is usually poorly developed. Asci are bitunicate, fissitunicate, saccate to subglobose, obclavate to fusiform, or rarely cylindro-clavate, and ascospores are uni- to multi-septate, and hyaline or brown (Arnaud 1918, Luttrell 1973, von Arx & Müller 1975, Barr 1987, Kirk et al. 2008, Wu et al. 2011, Hyde et al. 2013). Wu et al. (2011) recognized seven genera of Microthyriaceae, while a further
smooth-walled. On PDA, mycelium growing very slowly, colonies reaching 1.5 cm diam after 30 days, raised, comprising raised dark grey mycelium, white to greyish at the margin and also partly covering colonies, surface of colonies velvety. Asexual state: not observed.

Material examined:—THAILAND. Nakhon Nayok Province: Khao Yai National Park, on dead leaves of *Castanopsis* sp., 16 June 2012, Narumon Tangtheerasunun (MFLU13-0091)—holotype, ex-type living culture = MFLUCC12-0399 (MFU) = CPC 21375 = CBS 136075).

Discussion

Chaetothyriothecium differs from other genera in the *Microthyriales* that have thyriothecial ascomata (Wu et al. 2011), because of the darkened rim surrounding the central ostiole, which is made up of long radiating setae. In other aspects, *Chaetothyriothecium elegans* is typical of *Microthyriales* in having thyriothecia comprising radiating cells but with a poorly developed base, ovoid bitunicate asci with short pedicels and bi-celled, hyaline ascospores. The phylogenetic analyses of LSU sequence data indicate that *Chaetothyriothecium* is a well resolved genus in *Microthyriales*.

There is a lack of sequence data for *Microthyriales* available in GenBank and this group is also morphologically relatively poorly studied. A putative strain of *Microthyrium microscopicum*, which represents the type of the order indicates that the *Microthyriales* is well resolved (Schoch et al. 2009, Wu et al. 2011, Hyde et al. 2013). *Chaetothyriothecium elegans* is related to *Microthyrium microscopicum* and *Stomiopeltis betulae* and can be included in *Microthyriaceae* as it is morphologically similar and this is supported in the phylogenetic analysis. It is important that more gene sequences are obtained for taxa in this order so that a natural classification can be obtained.

Acknowledgements

This study was supported by Mae Fah Luang University grant number 56101020032 to study Dothideomycetes in Thailand. The Mushroom Research Foundation, Thailand is acknowledged for a scholarship to SH.

References

http://dx.doi.org/10.3767/003158508x314732

http://dx.doi.org/10.1016/j.mycres.2005.09.014

http://dx.doi.org/10.1007/s11557-009-0585-5

http://dx.doi.org/10.1007/s11557-010-0145-6

